Sun Jiaguang, Wang Lan, Song Ranran, Yanga Shubin
Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, 100191, Beijing, People's Republic of China.
Nanotechnology. 2016 Feb 5;27(5):055404. doi: 10.1088/0957-4484/27/5/055404. Epub 2016 Jan 11.
We develop an efficient approach to fabricate nitrogen-doped graphene with tunable pyridinic nitrogen levels (from 1.1 to 1.8 at.%), abundant in-plane holes and high surface areas (623 m(2) g(-1)) via a hydrothermal treatment of graphene oxide with hydrogen peroxide and subsequent annealing under ammonia gas. It is found that the chemical etching is beneficial to the formation of pyridinic nitrogen in graphene during the nitrogen-doping process, which is crucial to enhancing the electrocatalytic properties of graphene for oxygen reduction reaction (ORR). Hence, the optimized NG exhibits good electrocatalytic activity, more positive onset potential than Pt-C (-0.08 V versus -0.09 V), good durability, and high selectivity when it is employed as a metal-free catalyst for ORR. This approach may uncover a mechanism in escalation of pyridinic N atoms doped on the graphene basal edge and provide an efficient platform for the synthesis of a series of heteroatom-doped graphene with tunable heteroatom content for broad applications.
我们开发了一种高效的方法,通过用过氧化氢对氧化石墨烯进行水热处理,随后在氨气中退火,来制备具有可调吡啶氮含量(从1.1到1.8原子%)、丰富的面内孔洞和高比表面积(623 m² g⁻¹)的氮掺杂石墨烯。研究发现,化学蚀刻有利于在氮掺杂过程中在石墨烯中形成吡啶氮,这对于增强石墨烯对氧还原反应(ORR)的电催化性能至关重要。因此,优化后的氮掺杂石墨烯表现出良好的电催化活性,起始电位比Pt-C更正(相对于 -0.09 V为 -0.08 V),具有良好的耐久性,并且当用作ORR的无金属催化剂时具有高选择性。这种方法可能揭示了掺杂在石墨烯基面边缘的吡啶氮原子增加的机制,并为合成一系列具有可调杂原子含量的杂原子掺杂石墨烯以用于广泛应用提供了一个高效平台。