Suppr超能文献

通过在致密石墨烯中填充微孔构建双空间受限储库用于长寿命锂硫电池。

A dual-spatially-confined reservoir by packing micropores within dense graphene for long-life lithium/sulfur batteries.

作者信息

Li Hongfei, Yang Xiaowei, Wang Xiaomin, He Yu-Shi, Ye Fangmin, Liu Meinan, Zhang Yuegang

机构信息

College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.

School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.

出版信息

Nanoscale. 2016 Jan 28;8(4):2395-402. doi: 10.1039/c5nr06954h.

Abstract

In lithium/sulfur batteries, micropores could bring about strong interactions with polysulfides, but could not alleviate the partial polysulfide overflowing outside because of the volume expansion of the lithiated sulfur. A dual-spatially-confined reservoir for sulfur by wrapping microporous carbon with dense graphene, micro@meso-porous DSC (dual-spatial carbon), is synthesized to solve this issue. Such a structure is prepared through two distinctive methods: graphene promoted in situ hydrothermal carbonization of organics to grow micropores on itself, and liquid mediated drying of graphene hydrogel to form mesoporous graphene frameworks. In contrast to previously reported hierarchical carbon/S, the inner micropores are mainly responsible for loading sulfur, which could help confine its particle size, thus increasing the electrical/ionic conductivity and the utilization of sulfur, and restrain lithium polysulfide dissolution because of strong interaction with pore walls; while the outer mesopores act as another reservoir to stabilize the overflowed polysulfide and to enhance the Li(+) transport. The S-micro@meso-porous DSC cathode exhibits better discharge capacity and cycling performance than S-microporous AC and S-micro@macro-porous DSC, i.e., 59% and 37% higher capacity remaining at 0.5 C than the latter two, respectively.

摘要

在锂硫电池中,微孔会与多硫化物产生强烈相互作用,但由于锂化硫的体积膨胀,无法缓解部分多硫化物溢出到外部的问题。通过用致密石墨烯包裹微孔碳合成了一种用于硫的双空间限制储库,即微@介孔DSC(双空间碳),以解决该问题。这种结构通过两种独特的方法制备:石墨烯促进有机物原位水热碳化以在其自身上生长微孔,以及石墨烯水凝胶的液体介导干燥以形成介孔石墨烯框架。与先前报道的分级碳/硫相比,内部微孔主要负责负载硫,这有助于限制其粒径,从而提高电导率/离子电导率和硫的利用率,并由于与孔壁的强相互作用而抑制多硫化锂的溶解;而外部介孔则作为另一个储库来稳定溢出的多硫化物并增强Li(+)传输。S-微@介孔DSC阴极表现出比S-微孔AC和S-微@大孔DSC更好的放电容量和循环性能,即在0.5 C下比后两者分别高出59%和37%的容量保持率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验