Institute for Superconducting and Electronic Materials , University of Wollongong , Innovation Campus, Squires Way , Wollongong , New South Wales 2500 , Australia.
College of Materials Science and Engineering , Taiyuan University of Technology , Taiyuan , Shanxi 030024 , P. R. China.
ACS Appl Mater Interfaces. 2018 Apr 25;10(16):13573-13580. doi: 10.1021/acsami.8b02084. Epub 2018 Apr 13.
Lithium-sulfur (Li-S) batteries have received tremendous attention because of their extremely high theoretical capacity (1672 mA h g) and energy density (2600 W h kg). Nevertheless, the commercialization of Li-S batteries has been blocked by the shuttle effect of lithium polysulfide intermediates, the insulating nature of sulfur, and the volume expansion during cycling. Here, hierarchical porous N,O dual-doped carbon microrods (NOCMs) were developed as sulfur host materials with a large pore volume (1.5 cm g) and a high surface area (1147 m g). The highly porous structure of the NOCMs can act as a physical barrier to lithium polysulfides, while N and O functional groups enhance the interfacial interaction to trap lithium polysulfides, permitting a high loading amount of sulfur (79-90 wt % in the composite). Benefiting from the physical and chemical anchoring effect to prevent shuttling of polysulfides, S@NOCMs composites successfully solve the problems of low sulfur utilization and fast capacity fade and exhibit a stable reversible capacity of 1071 mA h g after 160 cycles with nearly 100% Coulombic efficiency at 0.2 C. The N,O dual doping treatment to porous carbon microrods paves a way toward rational design of high-performance Li-S cathodes with high energy density.
锂硫(Li-S)电池因其极高的理论容量(1672 mA h g)和能量密度(2600 W h kg)而受到极大关注。然而,锂多硫化物中间体的穿梭效应、硫的绝缘性以及循环过程中的体积膨胀,阻碍了 Li-S 电池的商业化。在这里,开发了具有大孔体积(1.5 cm g)和高比表面积(1147 m g)的分级多孔 N,O 双掺杂碳微棒(NOCMs)作为硫的主体材料。NOCMs 的高多孔结构可以作为物理障碍来阻止锂多硫化物,而 N 和 O 官能团增强了界面相互作用来捕获锂多硫化物,从而允许高载硫量(复合材料中 79-90wt%)。受益于物理和化学锚定效应来防止多硫化物的穿梭,S@NOCMs 复合材料成功解决了硫利用率低和容量快速衰减的问题,在 0.2 C 时以近 100%的库仑效率经过 160 次循环后,具有稳定的可逆容量为 1071 mA h g。对多孔碳微棒进行 N,O 双掺杂处理,为设计具有高能量密度的高性能 Li-S 正极开辟了一条途径。