Suppr超能文献

与流变学和力学性能相关的丝素蛋白降解

Silk Fibroin Degradation Related to Rheological and Mechanical Properties.

作者信息

Partlow Benjamin P, Tabatabai A Pasha, Leisk Gary G, Cebe Peggy, Blair Daniel L, Kaplan David L

机构信息

Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA.

Department of Physics Institute for Soft Matter Synthesis and Metrology, Georgetown University, 506 Reiss Science Building 37th and O Streets, N. W., Washington, D.C., 20057, USA.

出版信息

Macromol Biosci. 2016 May;16(5):666-75. doi: 10.1002/mabi.201500370. Epub 2016 Jan 12.

Abstract

Regenerated silk fibroin has been proposed as a material substrate for biomedical, optical, and electronic applications. Preparation of the silk fibroin solution requires extraction (degumming) to remove contaminants, but results in the degradation of the fibroin protein. Here, a mechanism of fibroin degradation is proposed and the molecular weight and polydispersity is characterized as a function of extraction time. Rheological analysis reveals significant changes in the viscosity of samples while mechanical characterization of cast and drawn films shows increased moduli, extensibility, and strength upon drawing. Fifteen minutes extraction time results in degraded fibroin that generates the strongest films. Structural analysis by wide angle X-ray scattering (WAXS) and Fourier transform infrared spectroscopy (FTIR) indicates molecular alignment in the drawn films and shows that the drawing process converts amorphous films into the crystalline, β-sheet, secondary structure. Most interesting, by using selected extraction times, films with near-native crystallinity, alignment, and molecular weight can be achieved; yet maximal mechanical properties for the films from regenerated silk fibroin solutions are found with solutions subjected to some degree of degradation. These results suggest that the regenerated solutions and the film casting and drawing processes introduce more complexity than native spinning processes.

摘要

再生丝素蛋白已被提议作为生物医学、光学和电子应用的材料基质。丝素蛋白溶液的制备需要提取(脱胶)以去除污染物,但这会导致丝素蛋白的降解。在此,我们提出了丝素蛋白降解的机制,并将分子量和多分散性表征为提取时间的函数。流变学分析表明样品的粘度有显著变化,而浇铸膜和拉伸膜的力学表征显示拉伸后模量、延展性和强度增加。15分钟的提取时间会导致丝素蛋白降解,从而产生最强的膜。通过广角X射线散射(WAXS)和傅里叶变换红外光谱(FTIR)进行的结构分析表明,拉伸膜中存在分子排列,并表明拉伸过程将无定形膜转化为结晶的β-折叠二级结构。最有趣的是,通过选择特定的提取时间,可以获得具有接近天然结晶度、排列和分子量的膜;然而,再生丝素蛋白溶液制成的膜在溶液受到一定程度降解时具有最大的力学性能。这些结果表明,再生溶液以及膜的浇铸和拉伸过程比天然纺丝过程引入了更多的复杂性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验