Suppr超能文献

两种分析小样本重复测量数据方法的比较

Comparison of Two Procedures for Analyzing Small Sets of Repeated Measures Data.

作者信息

Vallejo Guillermo, Livacic-Rojas Pablo

出版信息

Multivariate Behav Res. 2005 Apr 1;40(2):179-205. doi: 10.1207/s15327906mbr4002_2.

Abstract

This article compares two methods for analyzing small sets of repeated measures data under normal and non-normal heteroscedastic conditions: a mixed model approach with the Kenward-Roger correction and a multivariate extension of the modified Brown-Forsythe (BF) test. These procedures differ in their assumptions about the covariance structure of the data and in the method of estimation of the parameters defining the mean structure. Simulation results show that the BF test outperformed its competitor, in terms of Type I errors, particularly when the total sample size was small, and the data were normally distributed. Under non-normal distributions the BF test tended to err on the side of conservatism. Results also indicate that neither method was uniformly more powerful. With very few exceptions, the power differences between these two methods depended on the population covariance structure, the nature of the pairing of covariance matrices and group sizes, and the relationship between mean vectors and dispersion matrices.

摘要

本文比较了在正态和非正态异方差条件下分析少量重复测量数据的两种方法

采用肯沃德 - 罗杰校正的混合模型方法以及修正布朗 - 福赛斯(BF)检验的多变量扩展。这些方法在对数据协方差结构的假设以及定义均值结构的参数估计方法上有所不同。模拟结果表明,在I型错误方面,BF检验优于其竞争对手,特别是当总样本量较小时且数据呈正态分布时。在非正态分布下,BF检验往往偏向保守。结果还表明,没有一种方法在所有情况下都更具功效。几乎没有例外,这两种方法之间的功效差异取决于总体协方差结构、协方差矩阵配对的性质和组大小,以及均值向量和离散矩阵之间的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验