Suppr超能文献

评估重复测量分析的稳健性:小样本量和非正态数据的情况。

Evaluating the robustness of repeated measures analyses: the case of small sample sizes and nonnormal data.

机构信息

Department of Psychology, Johannes Gutenberg-Universität, 55099 Mainz, Germany.

出版信息

Behav Res Methods. 2013 Sep;45(3):792-812. doi: 10.3758/s13428-012-0281-2.

Abstract

Repeated measures analyses of variance are the method of choice in many studies from experimental psychology and the neurosciences. Data from these fields are often characterized by small sample sizes, high numbers of factor levels of the within-subjects factor(s), and nonnormally distributed response variables such as response times. For a design with a single within-subjects factor, we investigated Type I error control in univariate tests with corrected degrees of freedom, the multivariate approach, and a mixed-model (multilevel) approach (SAS PROC MIXED) with Kenward-Roger's adjusted degrees of freedom. We simulated multivariate normal and nonnormal distributions with varied population variance-covariance structures (spherical and nonspherical), sample sizes (N), and numbers of factor levels (K). For normally distributed data, as expected, the univariate approach with Huynh-Feldt correction controlled the Type I error rate with only very few exceptions, even if samples sizes as low as three were combined with high numbers of factor levels. The multivariate approach also controlled the Type I error rate, but it requires N ≥ K. PROC MIXED often showed acceptable control of the Type I error rate for normal data, but it also produced several liberal or conservative results. For nonnormal data, all of the procedures showed clear deviations from the nominal Type I error rate in many conditions, even for sample sizes greater than 50. Thus, none of these approaches can be considered robust if the response variable is nonnormally distributed. The results indicate that both the variance heterogeneity and covariance heterogeneity of the population covariance matrices affect the error rates.

摘要

重复测量方差分析是实验心理学和神经科学等许多研究的首选方法。这些领域的数据通常具有以下特点:样本量小、被试内因素的因素水平数多、反应变量呈非正态分布,如反应时间。对于只有一个被试内因素的设计,我们研究了具有校正自由度的单变量检验、多元方法和具有肯沃德-罗杰调整自由度的混合模型(多层次)方法(SAS PROC MIXED)的 I 型错误控制。我们模拟了具有不同总体方差-协方差结构(球形和非球形)、样本量(N)和因素水平数(K)的多变量正态和非正态分布。对于正态分布的数据,正如预期的那样,即使将样本量低至 3 并与高因素水平数结合使用,具有 Huynh-Feldt 校正的单变量方法也仅在极少数情况下控制了 I 型错误率。多元方法也控制了 I 型错误率,但它需要 N≥K。PROC MIXED 通常对正态数据的 I 型错误率控制得很好,但它也产生了一些宽松或保守的结果。对于非正态数据,即使在样本量大于 50 的情况下,所有这些方法在许多情况下都明显偏离了名义 I 型错误率。因此,如果反应变量呈非正态分布,则这些方法都不能被认为是稳健的。结果表明,总体协方差矩阵的方差异质性和协方差异质性都影响误差率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验