Debnath Debajyoti, Ghosh Pulak K, Li Yunyun, Marchesoni Fabio, Li Baowen
Department of Chemistry, Presidency University, Kolkata 700073, India.
Soft Matter. 2016 Feb 21;12(7):2017-24. doi: 10.1039/c5sm02811f. Epub 2016 Jan 13.
We model the two-dimensional diffusive dynamics of an eccentric artificial microswimmer in a highly viscous medium. We assume that the swimmer's propulsion results from an effective force applied to a center distinct from its center of mass, both centers resting on a body's axis parallel to its average self-propulsion velocity. Moreover, we allow for angular fluctuations of the velocity about the body's axis. We prove, both analytically and numerically, that the ensuing active diffusion of the swimmer is suppressed to an extent that strongly depends on the model parameters. In particular, the active diffusion constant undergoes a transition from a quadratic to a linear dependence on the self-propulsion speed, with practical consequences on the interpretation of the experimental data. Finally, we extend our model to describe the diffusion of chiral eccentric swimmers.
我们对偏心人工微游动体在高粘性介质中的二维扩散动力学进行建模。我们假设游动体的推进源于施加于与其质心不同的一个中心的有效力,这两个中心位于与游动体平均自推进速度平行的物体轴线上。此外,我们考虑速度围绕物体轴线的角涨落。我们通过解析和数值方法证明,由此产生的游动体的主动扩散受到抑制,其抑制程度强烈依赖于模型参数。特别地,主动扩散常数经历了从对自推进速度的二次依赖到线性依赖的转变,这对实验数据的解释具有实际影响。最后,我们扩展模型以描述手性偏心游动体的扩散。