Wang Yong, Ma Xiaolei, Liu Yong, Gong Ke, Henrickson Kristian C, Xu Maozeng, Wang Yinhai
School of Management, Chongqing Jiaotong University, Chongqing, China.
Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, United States of America.
PLoS One. 2016 Jan 13;11(1):e0146850. doi: 10.1371/journal.pone.0146850. eCollection 2016.
This paper proposes a two-stage algorithm to simultaneously estimate origin-destination (OD) matrix, link choice proportion, and dispersion parameter using partial traffic counts in a congested network. A non-linear optimization model is developed which incorporates a dynamic dispersion parameter, followed by a two-stage algorithm in which Generalized Least Squares (GLS) estimation and a Stochastic User Equilibrium (SUE) assignment model are iteratively applied until the convergence is reached. To evaluate the performance of the algorithm, the proposed approach is implemented in a hypothetical network using input data with high error, and tested under a range of variation coefficients. The root mean squared error (RMSE) of the estimated OD demand and link flows are used to evaluate the model estimation results. The results indicate that the estimated dispersion parameter theta is insensitive to the choice of variation coefficients. The proposed approach is shown to outperform two established OD estimation methods and produce parameter estimates that are close to the ground truth. In addition, the proposed approach is applied to an empirical network in Seattle, WA to validate the robustness and practicality of this methodology. In summary, this study proposes and evaluates an innovative computational approach to accurately estimate OD matrices using link-level traffic flow data, and provides useful insight for optimal parameter selection in modeling travelers' route choice behavior.
本文提出了一种两阶段算法,用于在拥堵网络中利用部分交通流量计数同时估计起讫点(OD)矩阵、路段选择比例和离散参数。开发了一个包含动态离散参数的非线性优化模型,随后是一个两阶段算法,其中广义最小二乘法(GLS)估计和随机用户均衡(SUE)分配模型被迭代应用,直到收敛。为了评估该算法的性能,在一个假设网络中使用具有高误差的输入数据实现了所提出的方法,并在一系列变异系数下进行了测试。估计的OD需求和路段流量的均方根误差(RMSE)用于评估模型估计结果。结果表明,估计的离散参数θ对变异系数的选择不敏感。所提出的方法被证明优于两种既定的OD估计方法,并产生接近真实值的参数估计。此外,将所提出的方法应用于华盛顿州西雅图的一个实证网络,以验证该方法的稳健性和实用性。总之,本研究提出并评估了一种创新的计算方法,用于利用路段级交通流数据准确估计OD矩阵,并为建模旅行者路线选择行为中的最优参数选择提供了有用的见解。