Kazda Michael, Gerginov Vladislav, Huntemann Nils, Lipphardt Burghard, Weyers Stefan
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Jul;63(7):970-4. doi: 10.1109/TUFFC.2016.2515759. Epub 2016 Jan 7.
Coherent manipulation of atomic states is a key concept in high-precision spectroscopy and used in atomic fountain clocks and a number of optical frequency standards. Operation of these standards can involve a number of cyclic switching processes, which may induce cycle-synchronous phase excursions of the interrogation signal and thus lead to shifts in the output of the frequency standard. We have built a field-programmable gate array (FPGA)-based phase analyzer to investigate these effects and conducted measurements on two kinds of frequency standards. For the caesium fountains PTB-CSF1 and PTB-CSF2, we were able to exclude phase variations of the microwave source at the level of a few microradians, corresponding to relative frequency shifts of less than [Formula: see text]. In the optical domain, we investigated phase variations in PTB's Yb (+) optical frequency standard and made detailed measurements of acousto-optic modulator (AOM) chirps and their scaling with duty cycle and driving power. We ascertained that cycle-synchronous as well as long-term phase excursion do not cause frequency shifts larger than [Formula: see text].