Muiznieks Lisa D, Miao Ming, Sitarz Eva E, Keeley Fred W
Molecular Structure and Function Program, Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G1X8, Canada.
Department of Biochemistry, 1 King's College Circle, University of Toronto, Toronto, ON, M5S1A8, Canada.
Biopolymers. 2016 May;105(5):267-75. doi: 10.1002/bip.22804.
Elastin is a fibrous structural protein of the extracellular matrix that provides reversible elastic recoil to vertebrate tissues such as arterial vessels, lung, and skin. The elastin monomer, tropoelastin, contains a large proportion of intrinsically disordered and flexible hydrophobic sequences that collectively are responsible for the initial phase separation of monomers during assembly, and are essential for driving elastic recoil. While structural disorder of hydrophobic sequences is controlled by a high proline and glycine residue composition, hydrophobic domain 30 of human tropoelastin is atypically proline-poor, and forms β-sheet amyloid-like fibrils as an individual peptide. We explored the contribution of confined regions of secondary structure at the location of domain 30 in human tropoelastin to fiber assembly and mechanical properties using a set of mutations designed to inhibit or enhance the propensity of β-sheet formation at this location. Our data support a dual role for confined β-sheet secondary structure in domain 30 of tropoelastin in guiding the formation of fibers, and as a determinant of stiffness and viscoelastic properties of cross-linked materials. Together, these results suggest a mechanism for specificity in fiber assembly, and elucidate structure-function relationships for the rational design of elastomeric biomaterials with defined mechanical properties.
弹性蛋白是细胞外基质中的一种纤维结构蛋白,它为诸如动脉血管、肺和皮肤等脊椎动物组织提供可逆的弹性回缩。弹性蛋白单体原弹性蛋白含有很大比例的内在无序且灵活的疏水序列,这些序列共同负责组装过程中单体的初始相分离,并且对于驱动弹性回缩至关重要。虽然疏水序列的结构无序由高脯氨酸和甘氨酸残基组成控制,但人原弹性蛋白的疏水结构域30脯氨酸含量异常低,并作为单个肽形成β-折叠淀粉样纤维。我们使用一组旨在抑制或增强该位置β-折叠形成倾向的突变,探索了人原弹性蛋白结构域30位置的二级结构受限区域对纤维组装和力学性能的贡献。我们的数据支持原弹性蛋白结构域30中受限的β-折叠二级结构在引导纤维形成以及作为交联材料刚度和粘弹性性质的决定因素方面具有双重作用。总之,这些结果表明了纤维组装特异性的一种机制,并阐明了具有特定力学性能的弹性生物材料合理设计的结构-功能关系。