Muiznieks Lisa D, Reichheld Sean E, Sitarz Eva E, Miao Ming, Keeley Fred W
Molecular Structure and Function Program, Research Institute, Hospital For Sick Children, 555 University Ave, Toronto, ON, M5G1X8, Canada.
Department of Biochemistry, University of Toronto, Toronto, ON, M5S1A8, Canada.
Biopolymers. 2015 Oct;103(10):563-73. doi: 10.1002/bip.22663.
Elastin is a self-assembling extracellular matrix protein that provides elasticity to tissues. For entropic elastomers such as elastin, conformational disorder of the monomer building block, even in the polymeric form, is essential for elastomeric recoil. The highly hydrophobic monomer employs a range of strategies for maintaining disorder and flexibility within hydrophobic domains, particularly involving a minimum compositional threshold of proline and glycine residues. However, the native sequence of hydrophobic elastin domain 30 is uncharacteristically proline-poor and, as an isolated polypeptide, is susceptible to formation of amyloid-like structures comprised of stacked β-sheet. Here we investigated the biophysical and mechanical properties of multiple sets of elastin-like polypeptides designed with different numbers of proline-poor domain 30 from human or rat tropoelastins. We compared the contributions of these proline-poor hydrophobic sequences to self-assembly through characterization of phase separation, and to the tensile properties of cross-linked, polymeric materials. We demonstrate that length of hydrophobic domains and propensity to form β-structure, both affecting polypeptide chain flexibility and cross-link density, play key roles in modulating elastin mechanical properties. This study advances the understanding of elastin sequence-structure-function relationships, and provides new insights that will directly support rational approaches to the design of biomaterials with defined suites of mechanical properties.
弹性蛋白是一种自组装的细胞外基质蛋白,为组织提供弹性。对于像弹性蛋白这样的熵弹性体,单体构建块的构象无序,即使是在聚合物形式下,对于弹性回缩也是必不可少的。高度疏水的单体采用一系列策略来维持疏水结构域内的无序和灵活性,特别是涉及脯氨酸和甘氨酸残基的最低组成阈值。然而,疏水弹性蛋白结构域30的天然序列脯氨酸含量异常低,并且作为一种分离的多肽,易形成由堆叠β-折叠组成的淀粉样结构。在这里,我们研究了多组弹性蛋白样多肽的生物物理和力学性能,这些多肽设计自人或大鼠原弹性蛋白中不同数量的脯氨酸含量低的结构域30。我们通过相分离表征比较了这些脯氨酸含量低的疏水序列对自组装的贡献,以及对交联聚合物材料拉伸性能的贡献。我们证明,疏水结构域的长度和形成β-结构的倾向,这两者都会影响多肽链的灵活性和交联密度,在调节弹性蛋白力学性能中起关键作用。这项研究推进了对弹性蛋白序列-结构-功能关系的理解,并提供了新的见解,将直接支持设计具有特定力学性能套件的生物材料的合理方法。