Liu Zhenyu, Ciarleglio Christopher M, Hamodi Ali S, Aizenman Carlos D, Pratt Kara G
Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming; and.
Department of Neuroscience, Brown University, Providence, Rhode Island.
J Neurophysiol. 2016 Mar;115(3):1477-86. doi: 10.1152/jn.01046.2015. Epub 2016 Jan 13.
In many regions of the vertebrate brain, microcircuits generate local recurrent activity that aids in the processing and encoding of incoming afferent inputs. Local recurrent activity can amplify, filter, and temporally and spatially parse out incoming input. Determining how these microcircuits function is of great interest because it provides glimpses into fundamental processes underlying brain computation. Within the Xenopus tadpole optic tectum, deep layer neurons display robust recurrent activity. Although the development and plasticity of this local recurrent activity has been well described, the underlying microcircuitry is not well understood. Here, using a whole brain preparation that allows for whole cell recording from neurons of the superficial tectal layers, we identified a physiologically distinct population of excitatory neurons that are gap junctionally coupled and through this coupling gate local recurrent network activity. Our findings provide a novel role for neuronal coupling among excitatory interneurons in the temporal processing of visual stimuli.
在脊椎动物大脑的许多区域,微电路会产生局部循环活动,这有助于对传入的传入输入进行处理和编码。局部循环活动可以放大、过滤并在时间和空间上解析传入的输入。确定这些微电路如何发挥作用非常有趣,因为它能让我们初步了解大脑计算的基本过程。在非洲爪蟾蝌蚪的视顶盖内,深层神经元表现出强烈的循环活动。尽管这种局部循环活动的发育和可塑性已得到充分描述,但其潜在的微电路却尚未被充分理解。在这里,我们使用一种全脑标本,该标本允许对顶盖浅层神经元进行全细胞记录,我们鉴定出了一群生理上不同的兴奋性神经元,它们通过缝隙连接耦合,并通过这种耦合控制局部循环网络活动。我们的发现揭示了兴奋性中间神经元之间的神经元耦合在视觉刺激的时间处理中的新作用。