Suppr超能文献

一群缝隙连接耦合神经元驱动发育中的视觉回路中的递归网络活动。

A population of gap junction-coupled neurons drives recurrent network activity in a developing visual circuit.

作者信息

Liu Zhenyu, Ciarleglio Christopher M, Hamodi Ali S, Aizenman Carlos D, Pratt Kara G

机构信息

Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming; and.

Department of Neuroscience, Brown University, Providence, Rhode Island.

出版信息

J Neurophysiol. 2016 Mar;115(3):1477-86. doi: 10.1152/jn.01046.2015. Epub 2016 Jan 13.

Abstract

In many regions of the vertebrate brain, microcircuits generate local recurrent activity that aids in the processing and encoding of incoming afferent inputs. Local recurrent activity can amplify, filter, and temporally and spatially parse out incoming input. Determining how these microcircuits function is of great interest because it provides glimpses into fundamental processes underlying brain computation. Within the Xenopus tadpole optic tectum, deep layer neurons display robust recurrent activity. Although the development and plasticity of this local recurrent activity has been well described, the underlying microcircuitry is not well understood. Here, using a whole brain preparation that allows for whole cell recording from neurons of the superficial tectal layers, we identified a physiologically distinct population of excitatory neurons that are gap junctionally coupled and through this coupling gate local recurrent network activity. Our findings provide a novel role for neuronal coupling among excitatory interneurons in the temporal processing of visual stimuli.

摘要

在脊椎动物大脑的许多区域,微电路会产生局部循环活动,这有助于对传入的传入输入进行处理和编码。局部循环活动可以放大、过滤并在时间和空间上解析传入的输入。确定这些微电路如何发挥作用非常有趣,因为它能让我们初步了解大脑计算的基本过程。在非洲爪蟾蝌蚪的视顶盖内,深层神经元表现出强烈的循环活动。尽管这种局部循环活动的发育和可塑性已得到充分描述,但其潜在的微电路却尚未被充分理解。在这里,我们使用一种全脑标本,该标本允许对顶盖浅层神经元进行全细胞记录,我们鉴定出了一群生理上不同的兴奋性神经元,它们通过缝隙连接耦合,并通过这种耦合控制局部循环网络活动。我们的发现揭示了兴奋性中间神经元之间的神经元耦合在视觉刺激的时间处理中的新作用。

相似文献

1
A population of gap junction-coupled neurons drives recurrent network activity in a developing visual circuit.
J Neurophysiol. 2016 Mar;115(3):1477-86. doi: 10.1152/jn.01046.2015. Epub 2016 Jan 13.
2
The horizontal brain slice preparation: a novel approach for visualizing and recording from all layers of the tadpole tectum.
J Neurophysiol. 2015 Jan 1;113(1):400-7. doi: 10.1152/jn.00672.2014. Epub 2014 Oct 15.
3
Development and spike timing-dependent plasticity of recurrent excitation in the Xenopus optic tectum.
Nat Neurosci. 2008 Apr;11(4):467-75. doi: 10.1038/nn2076. Epub 2008 Mar 23.
4
Inhibition to excitation ratio regulates visual system responses and behavior in vivo.
J Neurophysiol. 2011 Nov;106(5):2285-302. doi: 10.1152/jn.00641.2011. Epub 2011 Jul 27.
5
An eye-tectum preparation allowing routine whole-cell recordings of neuronal responses to visual stimuli in frog.
J Neurosci Methods. 2009 May 30;180(1):22-8. doi: 10.1016/j.jneumeth.2009.02.012. Epub 2009 Mar 4.
7
Intrinsic temporal tuning of neurons in the optic tectum is shaped by multisensory experience.
J Neurophysiol. 2019 Sep 1;122(3):1084-1096. doi: 10.1152/jn.00099.2019. Epub 2019 Jul 10.
9
Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles.
Eur J Neurosci. 2014 Sep;40(6):2948-62. doi: 10.1111/ejn.12664. Epub 2014 Jul 4.
10
Region-specific regulation of voltage-gated intrinsic currents in the developing optic tectum of the Xenopus tadpole.
J Neurophysiol. 2014 Oct 1;112(7):1644-55. doi: 10.1152/jn.00068.2014. Epub 2014 Jul 2.

引用本文的文献

1
Presenilin Regulates Retinotectal Synapse Formation through EphB2 Receptor Processing.
Dev Neurobiol. 2018 Dec;78(12):1171-1190. doi: 10.1002/dneu.22638. Epub 2018 Oct 10.
2
Emergence of Selectivity to Looming Stimuli in a Spiking Network Model of the Optic Tectum.
Front Neural Circuits. 2016 Nov 24;10:95. doi: 10.3389/fncir.2016.00095. eCollection 2016.

本文引用的文献

2
Functional constraints in the evolution of brain circuits.
Front Neurosci. 2015 Sep 1;9:303. doi: 10.3389/fnins.2015.00303. eCollection 2015.
3
Endogenous sequential cortical activity evoked by visual stimuli.
J Neurosci. 2015 Jun 10;35(23):8813-28. doi: 10.1523/JNEUROSCI.5214-14.2015.
4
Neurons in the most superficial lamina of the mouse superior colliculus are highly selective for stimulus direction.
J Neurosci. 2015 May 20;35(20):7992-8003. doi: 10.1523/JNEUROSCI.0173-15.2015.
6
The horizontal brain slice preparation: a novel approach for visualizing and recording from all layers of the tadpole tectum.
J Neurophysiol. 2015 Jan 1;113(1):400-7. doi: 10.1152/jn.00672.2014. Epub 2014 Oct 15.
7
Clonal relationships impact neuronal tuning within a phylogenetically ancient vertebrate brain structure.
Curr Biol. 2014 Aug 18;24(16):1929-33. doi: 10.1016/j.cub.2014.07.015. Epub 2014 Aug 7.
9
Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles.
Eur J Neurosci. 2014 Sep;40(6):2948-62. doi: 10.1111/ejn.12664. Epub 2014 Jul 4.
10
Region-specific regulation of voltage-gated intrinsic currents in the developing optic tectum of the Xenopus tadpole.
J Neurophysiol. 2014 Oct 1;112(7):1644-55. doi: 10.1152/jn.00068.2014. Epub 2014 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验