Bosman Conrado A, Aboitiz Francisco
Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam Amsterdam, Netherlands ; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile Santiago, Chile.
Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencia, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile.
Front Neurosci. 2015 Sep 1;9:303. doi: 10.3389/fnins.2015.00303. eCollection 2015.
Regardless of major anatomical and neurodevelopmental differences, the vertebrate isocortex shows a remarkably well-conserved organization. In the isocortex, reciprocal connections between excitatory and inhibitory neurons are distributed across multiple layers, encompassing modular, dynamical and recurrent functional networks during information processing. These dynamical brain networks are often organized in neuronal assemblies interacting through rhythmic phase relationships. Accordingly, these oscillatory interactions are observed across multiple brain scale levels, and they are associated with several sensory, motor, and cognitive processes. Most notably, oscillatory interactions are also found in the complete spectrum of vertebrates. Yet, it is unknown why this functional organization is so well conserved in evolution. In this perspective, we propose some ideas about how functional requirements of the isocortex can account for the evolutionary stability observed in microcircuits across vertebrates. We argue that isocortex architectures represent canonical microcircuits resulting from: (i) the early selection of neuronal architectures based on the oscillatory excitatory-inhibitory balance, which lead to the implementation of compartmentalized oscillations and (ii) the subsequent emergence of inferential coding strategies (predictive coding), which are able to expand computational capacities. We also argue that these functional constraints may be the result of several advantages that oscillatory activity contributes to brain network processes, such as information transmission and code reliability. In this manner, similarities in mesoscale brain circuitry and input-output organization between different vertebrate groups may reflect evolutionary constraints imposed by these functional requirements, which may or may not be traceable to a common ancestor.
尽管存在重大的解剖学和神经发育差异,但脊椎动物的同型皮质显示出非常保守的组织结构。在同型皮质中,兴奋性神经元和抑制性神经元之间的相互连接分布在多个层次上,在信息处理过程中形成模块化、动态化和循环的功能网络。这些动态的脑网络通常由通过节律相位关系相互作用的神经元集合组成。因此,这些振荡相互作用在多个脑尺度水平上都能观察到,并且与多种感觉、运动和认知过程相关。最值得注意的是,在整个脊椎动物谱系中也发现了振荡相互作用。然而,尚不清楚为什么这种功能组织在进化过程中如此保守。从这个角度出发,我们提出了一些关于同型皮质的功能需求如何解释在脊椎动物微电路中观察到的进化稳定性的观点。我们认为,同型皮质结构代表了典型的微电路,其源于:(i)基于振荡性兴奋-抑制平衡对神经元结构的早期选择,这导致了分区振荡的实现;以及(ii)随后出现的推理编码策略(预测编码),这种策略能够扩展计算能力。我们还认为,这些功能限制可能是振荡活动对脑网络过程所带来的多种优势的结果,例如信息传递和编码可靠性。通过这种方式,不同脊椎动物群体之间中尺度脑电路和输入-输出组织的相似性可能反映了这些功能需求所施加的进化限制,这些限制可能追溯到共同祖先,也可能无法追溯到共同祖先。