Suppr超能文献

执行非线性和非马尔可夫随机游走的粒子的自组织异常聚集。

Self-organized anomalous aggregation of particles performing nonlinear and non-Markovian random walks.

作者信息

Fedotov Sergei, Korabel Nickolay

机构信息

School of Mathematics, The University of Manchester, Manchester M13 9PL, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062127. doi: 10.1103/PhysRevE.92.062127. Epub 2015 Dec 16.

Abstract

We present a nonlinear and non-Markovian random walks model for stochastic movement and the spatial aggregation of living organisms that have the ability to sense population density. We take into account social crowding effects for which the dispersal rate is a decreasing function of the population density and residence time. We perform stochastic simulations of random walks and discover the phenomenon of self-organized anomaly (SOA), which leads to a collapse of stationary aggregation pattern. This anomalous regime is self-organized and arises without the need for a heavy tailed waiting time distribution from the inception. Conditions have been found under which the nonlinear random walk evolves into anomalous state when all particles aggregate inside a tiny domain (anomalous aggregation). We obtain power-law stationary density-dependent survival function and define the critical condition for SOA as the divergence of mean residence time. The role of the initial conditions in different SOA scenarios is discussed. We observe phenomenon of transient anomalous bimodal aggregation.

摘要

我们提出了一种非线性非马尔可夫随机游走模型,用于描述具有感知种群密度能力的生物的随机运动和空间聚集。我们考虑了社会拥挤效应,即扩散率是种群密度和停留时间的递减函数。我们对随机游走进行了随机模拟,发现了自组织异常(SOA)现象,这导致了静态聚集模式的崩溃。这种异常状态是自组织的,从一开始就不需要重尾等待时间分布。已经发现了一些条件,在这些条件下,当所有粒子聚集在一个微小区域内时(异常聚集),非线性随机游走会演变为异常状态。我们得到了幂律静态密度依赖生存函数,并将SOA的临界条件定义为平均停留时间的发散。讨论了初始条件在不同SOA场景中的作用。我们观察到了瞬态异常双峰聚集现象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验