Suppr超能文献

扩展德热纳区域中受限聚合物的有限尺寸修正。

Finite-size corrections for confined polymers in the extended de Gennes regime.

作者信息

Smithe Toby St Clere, Iarko Vitalii, Muralidhar Abhiram, Werner Erik, Dorfman Kevin D, Mehlig Bernhard

机构信息

Department of Physics, University of Gothenburg, Origovägen 6B, 412 96 Göteborg, Sweden.

Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062601. doi: 10.1103/PhysRevE.92.062601. Epub 2015 Dec 17.

Abstract

Theoretical results for the extension of a polymer confined to a channel are usually derived in the limit of infinite contour length. But experimental studies and simulations of DNA molecules confined to nanochannels are not necessarily in this asymptotic limit. We calculate the statistics of the span and the end-to-end distance of a semiflexible polymer of finite length in the extended de Gennes regime, exploiting the fact that the problem can be mapped to a one-dimensional weakly self-avoiding random walk. The results thus obtained compare favorably with pruned-enriched Rosenbluth method (PERM) simulations of a three-dimensional discrete wormlike chain model of DNA confined in a nanochannel. We discuss the implications for experimental studies of linear λ-DNA confined to nanochannels at the high ionic strengths used in many experiments.

摘要

对于局限于通道内的聚合物的延伸,其理论结果通常是在无限轮廓长度的极限情况下得出的。但局限于纳米通道内的DNA分子的实验研究和模拟并不一定处于这个渐近极限。我们利用该问题可映射为一维弱自回避随机游走这一事实,计算了处于扩展德热纳 regime 下有限长度半柔性聚合物的跨度和端到端距离的统计量。由此获得的结果与局限于纳米通道内的DNA三维离散蠕虫状链模型的剪枝富集罗森布鲁斯方法(PERM)模拟结果相比具有优势。我们讨论了在许多实验所使用的高离子强度下,对局限于纳米通道内的线性λ-DNA实验研究的影响。

相似文献

1
Finite-size corrections for confined polymers in the extended de Gennes regime.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062601. doi: 10.1103/PhysRevE.92.062601. Epub 2015 Dec 17.
3
Kirkwood diffusivity of long semiflexible chains in nanochannel confinement.
Macromolecules. 2015 Apr 28;48(8):2829-2839. doi: 10.1021/acs.macromol.5b00377.
4
Extension of nanoconfined DNA: Quantitative comparison between experiment and theory.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062701. doi: 10.1103/PhysRevE.92.062701. Epub 2015 Dec 2.
5
The Backfolded Odijk Regime for Wormlike Chains Confined in Rectangular Nanochannels.
Polymers (Basel). 2016 Mar 14;8(3):79. doi: 10.3390/polym8030079.
6
Evidence for the extended de Gennes regime of a semiflexible polymer in slit confinement.
Phys Rev E. 2018 Feb;97(2). doi: 10.1103/PhysRevE.97.022502. Epub 2018 Feb 8.
7
Wall depletion length of a channel-confined polymer.
Phys Rev E. 2017 Feb;95(2-1):022501. doi: 10.1103/PhysRevE.95.022501. Epub 2017 Feb 15.
8
Extension of DNA in a nanochannel as a rod-to-coil transition.
Phys Rev Lett. 2013 May 17;110(20):208103. doi: 10.1103/PhysRevLett.110.208103. Epub 2013 May 13.
9
From the Cover: The dynamics of genomic-length DNA molecules in 100-nm channels.
Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):10979-83. doi: 10.1073/pnas.0403849101. Epub 2004 Jul 13.
10
Simulations corroborate telegraph model predictions for the extension distributions of nanochannel confined DNA.
Biomicrofluidics. 2019 Aug 8;13(4):044110. doi: 10.1063/1.5109566. eCollection 2019 Jul.

引用本文的文献

1
Stretching Wormlike Chains in Narrow Tubes of Arbitrary Cross-Sections.
Polymers (Basel). 2019 Dec 10;11(12):2050. doi: 10.3390/polym11122050.
2
Distribution of label spacings for genome mapping in nanochannels.
Biomicrofluidics. 2018 Jun 25;12(3):034115. doi: 10.1063/1.5038417. eCollection 2018 May.
3
Evidence for the extended de Gennes regime of a semiflexible polymer in slit confinement.
Phys Rev E. 2018 Feb;97(2). doi: 10.1103/PhysRevE.97.022502. Epub 2018 Feb 8.

本文引用的文献

1
Extension of nanoconfined DNA: Quantitative comparison between experiment and theory.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062701. doi: 10.1103/PhysRevE.92.062701. Epub 2015 Dec 2.
2
Experimental evidence of weak excluded volume effects for nanochannel confined DNA.
ACS Macro Lett. 2015 Jul;4(7):759-763. doi: 10.1021/acsmacrolett.5b00340. Epub 2015 Jul 2.
3
Kirkwood diffusivity of long semiflexible chains in nanochannel confinement.
Macromolecules. 2015 Apr 28;48(8):2829-2839. doi: 10.1021/acs.macromol.5b00377.
4
Scaling regimes of a semiflexible polymer in a rectangular channel.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):050601. doi: 10.1103/PhysRevE.91.050601. Epub 2015 May 14.
5
Polymers under confinement: single polymers, how they interact, and as model chromosomes.
Soft Matter. 2015 Mar 28;11(12):2333-52. doi: 10.1039/c4sm02734e.
6
Confined polymers in the extended de Gennes regime.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):062602. doi: 10.1103/PhysRevE.90.062602. Epub 2014 Dec 22.
7
Stretching of DNA confined in nanochannels with charged walls.
Biomicrofluidics. 2014 Dec 10;8(6):064121. doi: 10.1063/1.4904008. eCollection 2014 Nov.
8
Extension of DNA in a nanochannel as a rod-to-coil transition.
Phys Rev Lett. 2013 May 17;110(20):208103. doi: 10.1103/PhysRevLett.110.208103. Epub 2013 May 13.
9
Mixed confinement regimes during equilibrium confinement spectroscopy of DNA.
J Chem Phys. 2014 Jun 7;140(21):214901. doi: 10.1063/1.4879515.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验