Suppr超能文献

用宇宙微波背景的光谱扭曲来测量宇宙的温度。

Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background.

机构信息

Department of Astronomy, Pupin Hall, Columbia University, New York, New York 10027, USA.

Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

Phys Rev Lett. 2015 Dec 31;115(26):261301. doi: 10.1103/PhysRevLett.115.261301. Epub 2015 Dec 23.

Abstract

The cosmic microwave background (CMB) energy spectrum is a near-perfect blackbody. The standard model of cosmology predicts small spectral distortions to this form, but no such distortion of the sky-averaged CMB spectrum has yet been measured. We calculate the largest expected distortion, which arises from the inverse Compton scattering of CMB photons off hot, free electrons, known as the thermal Sunyaev-Zel'dovich (TSZ) effect. We show that the predicted signal is roughly one order of magnitude below the current bound from the COBE-FIRAS experiment, but it can be detected at enormous significance (≳1000σ) by the proposed Primordial Inflation Explorer (PIXIE). Although cosmic variance reduces the effective signal-to-noise ratio to 230σ, this measurement will still yield a subpercent constraint on the total thermal energy of electrons in the observable Universe. Furthermore, we show that PIXIE can detect subtle relativistic effects in the sky-averaged TSZ signal at 30σ, which directly probe moments of the optical depth-weighted intracluster medium electron temperature distribution. These effects break the degeneracy between the electron density and the temperature in the mean TSZ signal, allowing a direct inference of the mean baryon density at low redshift. Future spectral distortion probes will thus determine the global thermodynamic properties of ionized gas in the Universe with unprecedented precision. These measurements will impose a fundamental "integral constraint" on models of galaxy formation and the injection of feedback energy over cosmic time.

摘要

宇宙微波背景(CMB)能量谱几乎是完美的黑体。宇宙学的标准模型预测这种形式会有小的谱扭曲,但尚未测量到天空平均 CMB 光谱的这种扭曲。我们计算了最大的预期扭曲,它来自 CMB 光子与热自由电子的逆康普顿散射,称为热 Sunyaev-Zel'dovich(TSZ)效应。我们表明,预测的信号大约比 COBE-FIRAS 实验目前的限制低一个数量级,但可以通过提议的原始膨胀探测器(PIXIE)以巨大的显著性(≳1000σ)检测到。虽然宇宙方差将有效信噪比降低到 230σ,但这项测量仍将对可观测宇宙中电子的总热能施加亚百分比的限制。此外,我们表明,PIXIE 可以在 30σ 处检测到天空平均 TSZ 信号中的微妙相对论效应,这直接探测了光学深度加权的星系团内介质电子温度分布的矩。这些效应打破了平均 TSZ 信号中电子密度和温度之间的简并性,允许直接推断低红移处的平均重子密度。未来的光谱扭曲探测器将因此以空前的精度确定宇宙中电离气体的全球热力学性质。这些测量将对星系形成模型和宇宙时间内反馈能量注入施加基本的“积分约束”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验