Suppr超能文献

通过E3连接酶-多聚泛素结合域融合蛋白的串联亲和纯化(连接酶陷阱)分离泛素化底物

Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase-polyubiquitin-binding domain fusions (ligase traps).

作者信息

Mark Kevin G, Loveless Theresa B, Toczyski David P

机构信息

Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA.

出版信息

Nat Protoc. 2016 Feb;11(2):291-301. doi: 10.1038/nprot.2016.008. Epub 2016 Jan 14.

Abstract

Ubiquitination is an essential protein modification that influences eukaryotic processes ranging from substrate degradation to nonproteolytic pathway alterations, including DNA repair and endocytosis. Previous attempts to analyze substrates via physical association with their respective ubiquitin ligases have had some success. However, because of the transient nature of enzyme-substrate interactions and rapid protein degradation, detection of substrates remains a challenge. Ligase trapping is an affinity purification approach in which ubiquitin ligases are fused to a polyubiquitin-binding domain, which allows the isolation of ubiquitinated substrates. Immunoprecipitation is first used to enrich for proteins that are bound to the ligase trap. Subsequently, affinity purification is used under denaturing conditions to capture proteins conjugated with hexahistidine-tagged ubiquitin. By using this protocol, ubiquitinated substrates that are specific for a given ligase can be isolated for mass spectrometry or western blot analysis. After cells have been collected, the described protocol can be completed in 2-3 d.

摘要

泛素化是一种重要的蛋白质修饰,它影响着从底物降解到非蛋白水解途径改变等真核生物过程,包括DNA修复和内吞作用。以往通过与各自泛素连接酶的物理结合来分析底物的尝试取得了一些成功。然而,由于酶-底物相互作用的短暂性和蛋白质的快速降解,底物的检测仍然是一个挑战。连接酶捕获是一种亲和纯化方法,其中泛素连接酶与一个多聚泛素结合结构域融合,这使得泛素化底物得以分离。首先使用免疫沉淀法富集与连接酶捕获物结合的蛋白质。随后,在变性条件下进行亲和纯化,以捕获与六聚组氨酸标记的泛素结合的蛋白质。通过使用该方案,可以分离出特定连接酶的泛素化底物,用于质谱分析或蛋白质印迹分析。细胞收集后,按照所述方案可在2-3天内完成。

相似文献

2
Detection of ubiquitination activity and identification of ubiquitinated substrates using TR-TUBE.
Methods Enzymol. 2019;618:135-147. doi: 10.1016/bs.mie.2018.12.032. Epub 2019 Feb 1.
3
A comprehensive method for detecting ubiquitinated substrates using TR-TUBE.
Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4630-5. doi: 10.1073/pnas.1422313112. Epub 2015 Mar 31.
4
A parallel affinity purification method for selective isolation of polyubiquitinated proteins.
Proteomics. 2008 Aug;8(15):3004-7. doi: 10.1002/pmic.200800271.
5
Analysis of ubiquitin E3 ligase activity using selective polyubiquitin binding proteins.
Biochim Biophys Acta. 2012 Nov;1823(11):2094-7. doi: 10.1016/j.bbamcr.2012.06.013. Epub 2012 Jun 18.
8
Internally tagged ubiquitin: a tool to identify linear polyubiquitin-modified proteins by mass spectrometry.
Nat Methods. 2017 May;14(5):504-512. doi: 10.1038/nmeth.4228. Epub 2017 Mar 20.
9
[Advances in the application of affinity separation for analyzing protein ubiquitination].
Se Pu. 2021 Jan;39(1):26-33. doi: 10.3724/SP.J.1123.2020.07005.
10
The Histone Variant MacroH2A1 Is a BRCA1 Ubiquitin Ligase Substrate.
Cell Rep. 2017 May 30;19(9):1758-1766. doi: 10.1016/j.celrep.2017.05.027.

引用本文的文献

1
Functionally deficient UBOX5 variants and primary angle-closure glaucoma.
Nat Commun. 2025 Aug 15;16(1):7620. doi: 10.1038/s41467-025-62775-x.
2
High-Throughput Discovery of Substrate Peptide Sequences for E3 Ubiquitin Ligases Using a cDNA Display Method.
Chembiochem. 2024 Dec 16;25(24):e202400617. doi: 10.1002/cbic.202400617. Epub 2024 Nov 25.
3
Synergy between a cytoplasmic vWFA/VIT protein and a WD40-repeat F-box protein controls development in .
Front Cell Dev Biol. 2023 Sep 14;11:1259844. doi: 10.3389/fcell.2023.1259844. eCollection 2023.
4
A targeted multi-proteomics approach generates a blueprint of the ciliary ubiquitinome.
Front Cell Dev Biol. 2023 Jan 26;11:1113656. doi: 10.3389/fcell.2023.1113656. eCollection 2023.
5
Probing protein ubiquitination in live cells.
Nucleic Acids Res. 2022 Nov 28;50(21):e125. doi: 10.1093/nar/gkac805.
6
Elucidation of TRIM25 ubiquitination targets involved in diverse cellular and antiviral processes.
PLoS Pathog. 2022 Sep 6;18(9):e1010743. doi: 10.1371/journal.ppat.1010743. eCollection 2022 Sep.
7
More Than Just Cleaning: Ubiquitin-Mediated Proteolysis in Fungal Pathogenesis.
Front Cell Infect Microbiol. 2021 Nov 10;11:774613. doi: 10.3389/fcimb.2021.774613. eCollection 2021.
8
[Advances in the application of affinity separation for analyzing protein ubiquitination].
Se Pu. 2021 Jan;39(1):26-33. doi: 10.3724/SP.J.1123.2020.07005.
9
Ubiquitination in Plant Meiosis: Recent Advances and High Throughput Methods.
Front Plant Sci. 2021 Apr 7;12:667314. doi: 10.3389/fpls.2021.667314. eCollection 2021.
10
Branched Ubiquitination: Detection Methods, Biological Functions and Chemical Synthesis.
Molecules. 2020 Nov 9;25(21):5200. doi: 10.3390/molecules25215200.

本文引用的文献

1
DNA Damage Regulates Translation through β-TRCP Targeting of CReP.
PLoS Genet. 2015 Jun 19;11(6):e1005292. doi: 10.1371/journal.pgen.1005292. eCollection 2015 Jun.
2
Quantifying ubiquitin signaling.
Mol Cell. 2015 May 21;58(4):660-76. doi: 10.1016/j.molcel.2015.02.020.
3
Proteomic analysis and identification of cellular interactors of the giant ubiquitin ligase HERC2.
J Proteome Res. 2015 Feb 6;14(2):953-66. doi: 10.1021/pr501005v. Epub 2014 Dec 15.
4
Substrate trapping proteomics reveals targets of the βTrCP2/FBXW11 ubiquitin ligase.
Mol Cell Biol. 2015 Jan;35(1):167-81. doi: 10.1128/MCB.00857-14. Epub 2014 Oct 20.
5
Prostate cancer. Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer.
Science. 2014 Oct 3;346(6205):85-89. doi: 10.1126/science.1250255. Epub 2014 Oct 2.
7
Limiting the power of p53 through the ubiquitin proteasome pathway.
Genes Dev. 2014 Aug 15;28(16):1739-51. doi: 10.1101/gad.247452.114.
8
Novel Cul3 binding proteins function to remodel E3 ligase complexes.
BMC Cell Biol. 2014 Jul 10;15:28. doi: 10.1186/1471-2121-15-28.
9
Ubiquitin ligase trapping identifies an SCF(Saf1) pathway targeting unprocessed vacuolar/lysosomal proteins.
Mol Cell. 2014 Jan 9;53(1):148-61. doi: 10.1016/j.molcel.2013.12.003. Epub 2014 Jan 2.
10
Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells.
Science. 2014 Jan 17;343(6168):301-5. doi: 10.1126/science.1244851. Epub 2013 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验