Aguirre Luis E, de Oliveira Alexandre, Seč David, Čopar Simon, Almeida Pedro L, Ravnik Miha, Godinho Maria Helena, Žumer Slobodan
CENIMAT/I3N, Research Centre in Materials/Institute for Nanostructures, Nanomodelling and Nanofabrication, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia; Adria Tehnik d.o.o., 4290 Tržič, Slovenia;
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1174-9. doi: 10.1073/pnas.1518739113. Epub 2016 Jan 14.
Probing the surface morphology of microthin fibers such as naturally occurring biofibers is essential for understanding their structural properties, biological function, and mechanical performance. The state-of-the-art methods for studying the surfaces of biofibers are atomic force microscopy imaging and scanning electron microscopy, which well characterize surface geometry of the fibers but provide little information on the local interaction potential of the fibers with the surrounding material. In contrast, complex nematic fluids respond very well to external fields and change their optical properties upon such stimuli. Here we demonstrate that liquid crystal droplets deposited on microthin biofibers--including spider silk and cellulosic fibers--reveal characteristics of the fibers' surface, performing as simple but sensitive surface sensors. By combining experiments and numerical modeling, different types of fibers are identified through the fiber-to-nematic droplet interactions, including perpendicular and axial or helicoidal planar molecular alignment. Spider silks align nematic molecules parallel to fibers or perpendicular to them, whereas cellulose aligns the molecules unidirectionally or helicoidally along the fibers, indicating notably different surface interactions. The nematic droplets as sensors thus directly reveal chirality of cellulosic fibers. Different fiber entanglements can be identified by depositing droplets exactly at the fiber crossings. More generally, the presented method can be used as a simple but powerful approach for probing the surface properties of small-size bioobjects, opening a route to their precise characterization.
探究天然存在的生物纤维等微纤的表面形态对于理解其结构特性、生物学功能和力学性能至关重要。研究生物纤维表面的现有方法是原子力显微镜成像和扫描电子显微镜,它们能很好地表征纤维的表面几何形状,但关于纤维与周围材料的局部相互作用势提供的信息很少。相比之下,复杂的向列型流体对外部场响应良好,并在这种刺激下改变其光学性质。在这里,我们证明沉积在微纤生物纤维(包括蜘蛛丝和纤维素纤维)上的液晶液滴揭示了纤维表面的特征,起到简单但灵敏的表面传感器的作用。通过结合实验和数值模拟,通过纤维与向列型液滴的相互作用识别出不同类型的纤维,包括垂直、轴向或螺旋平面分子排列。蜘蛛丝使向列型分子与纤维平行或垂直排列,而纤维素使分子沿纤维单向或螺旋排列,这表明表面相互作用明显不同。因此,作为传感器的向列型液滴直接揭示了纤维素纤维的手性。通过将液滴精确沉积在纤维交叉处,可以识别不同的纤维缠结。更一般地说,所提出的方法可以用作探测小尺寸生物物体表面性质的简单但强大的方法,为其精确表征开辟了一条途径。