Martínez-Garay Carlos Andrés, de Llanos Rosa, Romero Antonia María, Martínez-Pastor María Teresa, Puig Sergi
Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain.
Appl Environ Microbiol. 2016 Jan 15;82(6):1906-1916. doi: 10.1128/AEM.03464-15.
Iron is an essential micronutrient for all eukaryotic organisms. However, the low solubility of ferric iron has tremendously increased the prevalence of iron deficiency anemia, especially in women and children, with dramatic consequences. Baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, a fermentative microorganism, and a feed supplement. In this report, we explore the genetic diversity of 123 wild and domestic strains of S. cerevisiae isolated from different geographical origins and sources to characterize how yeast cells respond to elevated iron concentrations in the environment. By using two different forms of iron, we selected and characterized both iron-sensitive and iron-resistant yeast strains. We observed that when the iron concentration in the medium increases, iron-sensitive strains accumulate iron more rapidly than iron-resistant isolates. We observed that, consistent with excess iron leading to oxidative stress, the redox state of iron-sensitive strains was more oxidized than that of iron-resistant strains. Growth assays in the presence of different oxidative reagents ruled out that this phenotype was due to alterations in the general oxidative stress protection machinery. It was noteworthy that iron-resistant strains were more sensitive to iron deficiency conditions than iron-sensitive strains, which suggests that adaptation to either high or low iron is detrimental for the opposite condition. An initial gene expression analysis suggested that alterations in iron homeostasis genes could contribute to the different responses of distant iron-sensitive and iron-resistant yeast strains to elevated environmental iron levels.
铁是所有真核生物必需的微量营养素。然而,三价铁的低溶解度极大地增加了缺铁性贫血的患病率,尤其是在妇女和儿童中,产生了严重后果。面包酵母酿酒酵母被用作真核生物模型、发酵微生物和饲料添加剂。在本报告中,我们探索了从不同地理来源和源头分离的123株野生和家养酿酒酵母菌株的遗传多样性,以表征酵母细胞如何应对环境中升高的铁浓度。通过使用两种不同形式的铁,我们筛选并鉴定了铁敏感型和铁抗性酵母菌株。我们观察到,当培养基中的铁浓度增加时,铁敏感型菌株比铁抗性菌株更快地积累铁。我们观察到,与过量铁导致氧化应激一致,铁敏感型菌株的氧化还原状态比铁抗性菌株更氧化。在不同氧化试剂存在下的生长试验排除了这种表型是由于一般氧化应激保护机制的改变。值得注意的是,铁抗性菌株比铁敏感型菌株对缺铁条件更敏感,这表明适应高铁或低铁对相反的条件是有害的。初步的基因表达分析表明,铁稳态基因的改变可能导致远距离铁敏感型和铁抗性酵母菌株对环境中铁水平升高的不同反应。