Suppr超能文献

一种依赖TonB的转运蛋白负责甲基弯曲菌OB3b对甲烷菌素的摄取。

A TonB-Dependent Transporter Is Responsible for Methanobactin Uptake by Methylosinus trichosporium OB3b.

作者信息

Gu Wenyu, Farhan Ul Haque Muhammad, Baral Bipin S, Turpin Erick A, Bandow Nathan L, Kremmer Elisabeth, Flatley Andrew, Zischka Hans, DiSpirito Alan A, Semrau Jeremy D

机构信息

Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA.

Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA.

出版信息

Appl Environ Microbiol. 2016 Jan 15;82(6):1917-1923. doi: 10.1128/AEM.03884-15.

Abstract

Methanobactin, a small modified polypeptide synthesized by methanotrophs for copper uptake, has been found to be chromosomally encoded. The gene encoding the polypeptide precursor of methanobactin, mbnA, is part of a gene cluster that also includes several genes encoding proteins of unknown function (but speculated to be involved in methanobactin formation) as well as mbnT, which encodes a TonB-dependent transporter hypothesized to be responsible for methanobactin uptake. To determine if mbnT is truly responsible for methanobactin uptake, a knockout was constructed in Methylosinus trichosporium OB3b using marker exchange mutagenesis. The resulting M. trichosporium mbnT::Gm(r) mutant was found to be able to produce methanobactin but was unable to internalize it. Further, if this mutant was grown in the presence of copper and exogenous methanobactin, copper uptake was significantly reduced. Expression of mmoX and pmoA, encoding polypeptides of the soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO), respectively, also changed significantly when methanobactin was added, which indicates that the mutant was unable to collect copper under these conditions. Copper uptake and gene expression, however, were not affected in wild-type M. trichosporium OB3b, indicating that the TonB-dependent transporter encoded by mbnT is responsible for methanobactin uptake and that methanobactin is a key mechanism used by methanotrophs for copper uptake. When the mbnT::Gm(r) mutant was grown under a range of copper concentrations in the absence of methanobactin, however, the phenotype of the mutant was indistinguishable from that of wild-type M. trichosporium OB3b, indicating that this methanotroph has multiple mechanisms for copper uptake.

摘要

甲烷菌素是甲烷营养菌合成的一种用于摄取铜的小的修饰多肽,已发现它是由染色体编码的。编码甲烷菌素多肽前体的基因mbnA是一个基因簇的一部分,该基因簇还包括几个编码功能未知蛋白质(但推测参与甲烷菌素形成)的基因以及mbnT,mbnT编码一种推测负责甲烷菌素摄取的依赖TonB的转运蛋白。为了确定mbnT是否真的负责甲烷菌素的摄取,利用标记交换诱变在甲基弯曲菌OB3b中构建了一个基因敲除菌株。结果发现,所得的甲基弯曲菌mbnT::Gm(r)突变体能够产生甲烷菌素,但无法将其内化。此外,如果该突变体在铜和外源甲烷菌素存在的情况下生长,铜的摄取会显著减少。当添加甲烷菌素时,分别编码可溶性甲烷单加氧酶(sMMO)和颗粒性甲烷单加氧酶(pMMO)多肽的mmoX和pmoA的表达也发生了显著变化,这表明该突变体在这些条件下无法摄取铜。然而,野生型甲基弯曲菌OB3b中的铜摄取和基因表达不受影响,这表明由mbnT编码的依赖TonB的转运蛋白负责甲烷菌素的摄取,并且甲烷菌素是甲烷营养菌摄取铜的关键机制。然而,当mbnT::Gm(r)突变体在一系列铜浓度下、无甲烷菌素的情况下生长时,该突变体的表型与野生型甲基弯曲菌OB3b无法区分,这表明这种甲烷营养菌具有多种摄取铜的机制。

相似文献

1
A TonB-Dependent Transporter Is Responsible for Methanobactin Uptake by Methylosinus trichosporium OB3b.
Appl Environ Microbiol. 2016 Jan 15;82(6):1917-1923. doi: 10.1128/AEM.03884-15.
5
Competition between metals for binding to methanobactin enables expression of soluble methane monooxygenase in the presence of copper.
Appl Environ Microbiol. 2015 Feb;81(3):1024-31. doi: 10.1128/AEM.03151-14. Epub 2014 Nov 21.
6
Methanobactin and MmoD work in concert to act as the 'copper-switch' in methanotrophs.
Environ Microbiol. 2013 Nov;15(11):3077-86. doi: 10.1111/1462-2920.12150. Epub 2013 May 20.
7
8
Detoxification of mercury by methanobactin from Methylosinus trichosporium OB3b.
Appl Environ Microbiol. 2013 Oct;79(19):5918-26. doi: 10.1128/AEM.01673-13. Epub 2013 Jul 19.
10
Methanobactin from Methylosinus trichosporium OB3b inhibits NO reduction in denitrifiers.
ISME J. 2018 Aug;12(8):2086-2089. doi: 10.1038/s41396-017-0022-8. Epub 2018 Jan 12.

引用本文的文献

1
Non-growth substrate ethane perturbs core methanotrophy in obligate methanotroph OB3b upon nutrient availability.
Appl Environ Microbiol. 2025 Aug 20;91(8):e0096925. doi: 10.1128/aem.00969-25. Epub 2025 Jul 10.
2
Purification and biochemical characterization of methanobactin biosynthetic enzymes.
Methods Enzymol. 2024;702:171-187. doi: 10.1016/bs.mie.2024.06.011. Epub 2024 Jul 14.
3
Methanobactins: Structures, Biosynthesis, and Microbial Diversity.
Annu Rev Microbiol. 2024 Nov;78(1):383-401. doi: 10.1146/annurev-micro-041522-092911. Epub 2024 Nov 7.
4
Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases.
Chem Rev. 2024 Feb 14;124(3):1288-1320. doi: 10.1021/acs.chemrev.3c00727. Epub 2024 Feb 2.
5
Nitrogen Fixation and Hydrogen Evolution by Sterically Encumbered Mo-Nitrogenase.
JACS Au. 2023 May 9;3(5):1521-1533. doi: 10.1021/jacsau.3c00165. eCollection 2023 May 22.
6
Ecological Aerobic Ammonia and Methane Oxidation Involved Key Metal Compounds, Fe and Cu.
Life (Basel). 2022 Nov 7;12(11):1806. doi: 10.3390/life12111806.
7
8
Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides.
Chem Rev. 2022 Sep 28;122(18):14722-14814. doi: 10.1021/acs.chemrev.2c00210. Epub 2022 Sep 1.
9
Copper mobilisation from Cu sulphide minerals by methanobactin: Effect of pH, oxygen and natural organic matter.
Geobiology. 2022 Sep;20(5):690-706. doi: 10.1111/gbi.12505. Epub 2022 Jun 18.

本文引用的文献

1
[Biosynthesis of secondary metabolites in methanotrophs: biochemical and genetic aspects (review)].
Prikl Biokhim Mikrobiol. 2015 Mar-Apr;51(2):140-50. doi: 10.7868/s0555109915020087.
2
Metabolic engineering in methanotrophic bacteria.
Metab Eng. 2015 May;29:142-152. doi: 10.1016/j.ymben.2015.03.010. Epub 2015 Mar 28.
3
Methane as a resource: can the methanotrophs add value?
Environ Sci Technol. 2015 Apr 7;49(7):4001-18. doi: 10.1021/es504242n. Epub 2015 Mar 10.
4
Competition between metals for binding to methanobactin enables expression of soluble methane monooxygenase in the presence of copper.
Appl Environ Microbiol. 2015 Feb;81(3):1024-31. doi: 10.1128/AEM.03151-14. Epub 2014 Nov 21.
5
Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage.
Nature. 2013 Aug 29;500(7464):567-70. doi: 10.1038/nature12375. Epub 2013 Jul 28.
6
Detoxification of mercury by methanobactin from Methylosinus trichosporium OB3b.
Appl Environ Microbiol. 2013 Oct;79(19):5918-26. doi: 10.1128/AEM.01673-13. Epub 2013 Jul 19.
7
Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia.
Environ Microbiol Rep. 2009 Oct;1(5):293-306. doi: 10.1111/j.1758-2229.2009.00022.x. Epub 2009 Mar 3.
8
Methanobactin and MmoD work in concert to act as the 'copper-switch' in methanotrophs.
Environ Microbiol. 2013 Nov;15(11):3077-86. doi: 10.1111/1462-2920.12150. Epub 2013 May 20.
9
Genome mining for methanobactins.
BMC Biol. 2013 Feb 26;11:17. doi: 10.1186/1741-7007-11-17.
10
The Methylococcus capsulatus (Bath) secreted protein, MopE*, binds both reduced and oxidized copper.
PLoS One. 2012;7(8):e43146. doi: 10.1371/journal.pone.0043146. Epub 2012 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验