Suppr超能文献

在存在异源甲烷菌素的情况下,甲基孢囊菌 OB3b 摄取铜的多种机制。

Multiple Mechanisms for Copper Uptake by Methylosinus trichosporium OB3b in the Presence of Heterologous Methanobactin.

机构信息

Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA.

Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State Universitygrid.34421.30, Ames, Iowa, USA.

出版信息

mBio. 2022 Oct 26;13(5):e0223922. doi: 10.1128/mbio.02239-22. Epub 2022 Sep 21.

Abstract

Methanotrophs require copper for their activity as it plays a critical role in the oxidation of methane to methanol. To sequester copper, some methanotrophs secrete a copper-binding compound termed methanobactin (MB). MB, after binding copper, is reinternalized via a specific outer membrane TonB-dependent transporter (TBDT). Methylosinus trichosporium OB3b has two such TBDTs (MbnT1 and MbnT2) that enable M. trichosporium OB3b to take up not only its own MB (MB-OB3b) but also heterologous MB produced from other methanotrophs, e.g., MB of Methylocystis sp. strain SB2 (MB-SB2). Here, we show that uptake of copper in the presence of heterologous MB-SB2 can either be achieved by initiating transcription of or by using its own MB-OB3b to extract copper from MB-SB2. Transcription of is mediated by the N-terminal signaling domain of MbnT2 together with an extracytoplasmic function sigma factor and an anti-sigma factor encoded by and , respectively. Deletion of or excision of the N-terminal region of MbnT2 abolished induction of . However, copper uptake from MB-SB2 was still observed in M. trichosporium OB3b mutants that were defective in MbnT2 induction/function, suggesting another mechanism for uptake copper-loaded MB-SB2. Additional deletion of MB-OB3b synthesis genes in the M. trichosporium OB3b mutants defective in MbnT2 induction/function disrupted their ability to take up copper in the presence of MB-SB2, indicating a role of MB-OB3b in copper extraction from MB-SB2. Methanotrophs play a critical role in the global carbon cycle, as well as in future strategies for mitigating climate change through their consumption of methane, a trace atmospheric gas much more potent than carbon dioxide in global warming potential. Copper uptake is critical for methanotrophic activity, and here, we show different approaches for copper uptake. This study expands our knowledge and understanding of how methanotrophs collect and compete for copper, and such information may be useful in future manipulation of methanotrophs for a variety of environmental and industrial applications.

摘要

甲烷营养菌的活动需要铜,因为铜在甲烷氧化为甲醇的过程中起着关键作用。为了螯合铜,一些甲烷营养菌分泌一种称为甲烷菌素(MB)的铜结合化合物。MB 结合铜后,通过特定的外膜 TonB 依赖性转运体(TBDT)再内化。甲基单胞菌 OB3b 有两种这样的 TBDT(MbnT1 和 MbnT2),使甲基单胞菌 OB3b 不仅能够摄取自己的 MB(MB-OB3b),还能够摄取来自其他甲烷营养菌的异源 MB,例如,甲基球菌菌株 SB2 的 MB(MB-SB2)。在这里,我们表明,在存在异源 MB-SB2 的情况下,可以通过启动 的转录或使用其自身的 MB-OB3b 从 MB-SB2 中提取铜来实现铜的摄取。 的转录由 MbnT2 的 N 端信号结构域与细胞质功能 sigma 因子和分别由 和 编码的反 sigma 因子共同介导。 或 MbnT2 的 N 端区域缺失, 则被消除。然而,在 M. trichosporium OB3b 突变体中,仍然观察到从 MB-SB2 摄取铜,该突变体在 MbnT2 诱导/功能方面存在缺陷,这表明了从负载铜的 MB-SB2 摄取铜的另一种机制。在 M. trichosporium OB3b 突变体中,进一步缺失在 MbnT2 诱导/功能方面有缺陷的基因合成 MB-OB3b,破坏了它们在存在 MB-SB2 时摄取铜的能力,表明 MB-OB3b 在从 MB-SB2 中提取铜方面发挥作用。 甲烷营养菌在全球碳循环中以及在通过消耗甲烷来减缓气候变化的未来战略中发挥着关键作用,因为甲烷是一种痕量大气气体,在全球变暖潜能方面比二氧化碳的潜力大得多。铜摄取对甲烷营养菌的活性至关重要,在这里,我们展示了不同的铜摄取方法。这项研究扩展了我们对甲烷营养菌收集和竞争铜的认识和理解,这些信息可能对未来操纵甲烷营养菌在各种环境和工业应用中有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1615/9601215/15210b0e3185/mbio.02239-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验