Suppr超能文献

用于骨组织工程的可注射双凝胶载细胞复合水凝胶

Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering.

作者信息

Vo T N, Shah S R, Lu S, Tatara A M, Lee E J, Roh T T, Tabata Y, Mikos A G

机构信息

Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX, 77251-1892, USA.

Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.

出版信息

Biomaterials. 2016 Mar;83:1-11. doi: 10.1016/j.biomaterials.2015.12.026. Epub 2015 Dec 31.

Abstract

The present work investigated the osteogenic potential of injectable, dual thermally and chemically gelable composite hydrogels for mesenchymal stem cell (MSC) delivery in vitro and in vivo. Composite hydrogels comprising copolymer macromers of N-isopropylacrylamide were fabricated through the incorporation of gelatin microparticles (GMPs) as enzymatically digestible porogens and sites for cellular attachment. High and low polymer content hydrogels with and without GMP loading were shown to successfully encapsulate viable MSCs and maintain their survival over 28 days in vitro. GMP incorporation was also shown to modulate alkaline phosphatase production, but enhanced hydrogel mineralization along with higher polymer content even in the absence of cells. Moreover, the regenerative capacity of 2 mm thick hydrogels with GMPs only, MSCs only, or GMPs and MSCs was evaluated in vivo in an 8 mm rat critical size cranial defect for 4 and 12 weeks. GMP incorporation led to enhanced bony bridging and mineralization within the defect at each timepoint, and direct bone-implant contact as determined by microcomputed tomography and histological scoring, respectively. Encapsulation of both GMPs and MSCs enabled hydrogel degradation leading to significant tissue infiltration and osteoid formation. The results suggest that these injectable, dual-gelling cell-laden composite hydrogels can facilitate bone ingrowth and integration, warranting further investigation for bone tissue engineering.

摘要

本研究探讨了可注射的、具有热和化学双重凝胶化特性的复合水凝胶在体外和体内用于间充质干细胞(MSC)递送时的成骨潜力。通过掺入明胶微粒(GMPs)作为可酶解的致孔剂和细胞附着位点,制备了包含N-异丙基丙烯酰胺共聚物大分子单体的复合水凝胶。结果表明,含和不含GMP负载的高、低聚合物含量水凝胶能够成功包封活的MSC,并在体外维持其存活28天。还发现,即使在没有细胞的情况下,掺入GMP也能调节碱性磷酸酶的产生,但随着聚合物含量的增加,水凝胶矿化增强。此外,在8毫米大鼠临界尺寸颅骨缺损模型中,对仅含GMP、仅含MSC或同时含GMP和MSC的2毫米厚水凝胶进行了4周和12周的体内再生能力评估。在每个时间点,掺入GMP均导致缺损内骨桥接和矿化增强,分别通过微型计算机断层扫描和组织学评分确定了直接的骨-植入物接触。同时包封GMP和MSC可使水凝胶降解,导致显著的组织浸润和类骨质形成。结果表明,这些可注射的、双凝胶化的载细胞复合水凝胶可促进骨长入和整合,值得进一步开展骨组织工程研究。

相似文献

1
Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering.
Biomaterials. 2016 Mar;83:1-11. doi: 10.1016/j.biomaterials.2015.12.026. Epub 2015 Dec 31.
2
Biodegradable, phosphate-containing, dual-gelling macromers for cellular delivery in bone tissue engineering.
Biomaterials. 2015 Oct;67:286-96. doi: 10.1016/j.biomaterials.2015.07.016. Epub 2015 Jul 21.
4
Effects of cellular parameters on the in vitro osteogenic potential of dual-gelling mesenchymal stem cell-laden hydrogels.
J Biomater Sci Polym Ed. 2016 Aug;27(12):1277-90. doi: 10.1080/09205063.2016.1195157.
5
6
Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
Acta Biomater. 2019 Sep 1;95:348-356. doi: 10.1016/j.actbio.2019.02.046. Epub 2019 Mar 1.
8
Effective Bone Regeneration Using Thermosensitive Poly(N-Isopropylacrylamide) Grafted Gelatin as Injectable Carrier for Bone Mesenchymal Stem Cells.
ACS Appl Mater Interfaces. 2015 Sep 2;7(34):19006-15. doi: 10.1021/acsami.5b02821. Epub 2015 Aug 18.
9
Evaluation of Gelatin Microparticles as Adherent-Substrates for Mesenchymal Stem Cells in a Hydrogel Composite.
Ann Biomed Eng. 2016 Jun;44(6):1894-907. doi: 10.1007/s10439-016-1582-x. Epub 2016 Mar 2.
10
Fabrication of cell-laden macroporous biodegradable hydrogels with tunable porosities and pore sizes.
Tissue Eng Part C Methods. 2015 Mar;21(3):263-73. doi: 10.1089/ten.TEC.2014.0224. Epub 2014 Sep 29.

引用本文的文献

1
Bgh/GelMA/CMCS hydrogel with bone MSC-EVs for lunate defect repair.
Nanomedicine (Lond). 2025 Aug;20(15):1835-1850. doi: 10.1080/17435889.2025.2513852. Epub 2025 Jun 30.
2
Injectable Polyhydroxyalkanoate-Nano-Clay Microcarriers Loaded with r-BMSCs Enhance the Repair of Cranial Defects in Rats.
Int J Nanomedicine. 2024 Dec 24;19:13839-13855. doi: 10.2147/IJN.S498950. eCollection 2024.
3
Biopolymer-based oral films integrated with probiotic active compounds for improved health applications.
Arch Microbiol. 2024 Nov 28;207(1):4. doi: 10.1007/s00203-024-04207-w.
4
Enhanced osteogenesis of mesenchymal stem cells encapsulated in injectable microporous hydrogel.
Sci Rep. 2024 Jun 25;14(1):14665. doi: 10.1038/s41598-024-65731-9.
5
Cross Talk Between Cells and the Current Bioceramics in Bone Regeneration: A Comprehensive Review.
Cell Transplant. 2024 Jan-Dec;33:9636897241236030. doi: 10.1177/09636897241236030.
6
A 3D-Printed Scaffold for Repairing Bone Defects.
Polymers (Basel). 2024 Mar 5;16(5):706. doi: 10.3390/polym16050706.
7
Development of an image processing software for quantification of histological calcification staining images.
PLoS One. 2023 Oct 5;18(10):e0286626. doi: 10.1371/journal.pone.0286626. eCollection 2023.
8
Advances in Synthetic Grafts in Spinal Fusion Surgery.
Int J Spine Surg. 2023 Dec 27;17(S3):S18-S27. doi: 10.14444/8557.
10
Injectable and Cell-Laden Hydrogel in the Contained Bone Defect Animal Model: A Systematic Review.
Tissue Eng Regen Med. 2023 Oct;20(6):829-837. doi: 10.1007/s13770-023-00569-2. Epub 2023 Aug 10.

本文引用的文献

1
Biodegradable, phosphate-containing, dual-gelling macromers for cellular delivery in bone tissue engineering.
Biomaterials. 2015 Oct;67:286-96. doi: 10.1016/j.biomaterials.2015.07.016. Epub 2015 Jul 21.
2
3
Synthesis, physicochemical characterization, and cytocompatibility of bioresorbable, dual-gelling injectable hydrogels.
Biomacromolecules. 2014 Jan 13;15(1):132-42. doi: 10.1021/bm401413c. Epub 2013 Dec 16.
4
Evaluation of bone regeneration using the rat critical size calvarial defect.
Nat Protoc. 2012 Oct;7(10):1918-29. doi: 10.1038/nprot.2012.113. Epub 2012 Sep 27.
7
Synthesis and characterization of thermally and chemically gelling injectable hydrogels for tissue engineering.
Biomacromolecules. 2012 Jun 11;13(6):1908-15. doi: 10.1021/bm300429e. Epub 2012 May 11.
8
Strategies for controlled delivery of growth factors and cells for bone regeneration.
Adv Drug Deliv Rev. 2012 Sep;64(12):1292-309. doi: 10.1016/j.addr.2012.01.016. Epub 2012 Feb 4.
10
The MSC: an injury drugstore.
Cell Stem Cell. 2011 Jul 8;9(1):11-5. doi: 10.1016/j.stem.2011.06.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验