Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China; High Pressure Science and Engineering Center, University of Nevada, Las Vegas, NV 89154, United States.
J Colloid Interface Sci. 2016 Apr 1;467:97-104. doi: 10.1016/j.jcis.2016.01.003. Epub 2016 Jan 4.
Visible-light-driven splitting of water using semiconductor photocatalysts is an excellent example of sustainable chemistry. The fabrication of mesoporous photocatalysts with a narrow bandgap into the sunlight region and a high specific surface area is crucial for efficient hydrogen evolution under visible light irradiation. Herein, we describe a facile one-pot hydrothermal approach toward uniform mesoporous microspheres of Cd1-xZnxS by adopting diethylenetriamine (DETA) as the structure-directing agent. The method is facile, reproducible and allows simultaneously control of the morphology, particle size, bandgaps, as well as the specific surface area of the mesoporous microspheres Cd1-xZnxS. The photocatalytic activity on H2 production through the splitting of water without noble metal loadingis highly enhanced by the mesoporous structure feature of the products. The optimized Cd0.2Zn0.8S mesoporous microspheres exhibit a specific surface area up to 98.09m(2)/g and a H2 production rate of 3.43mmol/hg (about 7.62 times higher than that of pure CdS powers) under visible light irradiation. Furthermore, apparent quantum efficiency (QE) of 16.2% was achieved in the as-fabricated Cd0.2Zn0.8S mesoporous microspheres under irradiation at 420nm. This study provides an effective route toward mesoporous microspheres photocatalysts for further investigations and practical applications.
利用半导体光催化剂分解水是可持续化学的一个极好范例。将带隙窄至太阳光区且比表面积高的介孔光催化剂制备成具有均匀形貌、尺寸可控、窄带隙和高比表面积的介孔微球是实现可见光下高效析氢的关键。在此,我们采用二乙烯三胺(DETA)作为结构导向剂,通过简便的一步水热法制备了均匀的 Cd1-xZnxS 介孔微球。该方法简便、重现性好,同时可以控制介孔微球 Cd1-xZnxS 的形貌、粒径、带隙和比表面积。在没有负载贵金属的情况下,通过光解水析氢的光催化活性得到了显著提高,这得益于产物的介孔结构特征。优化后的 Cd0.2Zn0.8S 介孔微球在可见光照射下的比表面积高达 98.09m²/g,产氢速率为 3.43mmol/hg(约为纯 CdS 粉末的 7.62 倍)。此外,在 420nm 光照下,所制备的 Cd0.2Zn0.8S 介孔微球的表观量子效率(QE)达到了 16.2%。本研究为介孔微球光催化剂的进一步研究和实际应用提供了一条有效途径。