Suppr超能文献

枯草芽孢杆菌的补料分批生物分子生产:综述

Fed-Batch Biomolecule Production by Bacillus subtilis: A State of the Art Review.

作者信息

Ÿztürk Sibel, Ÿalık Pınar, Ÿzdamar Tunçer H

机构信息

Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, 06800 Ankara, Turkey; Graduate School of Natural and Applied Sciences, Department of Biotechnology, Middle East Technical University, 06800 Ankara, Turkey.

Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, 06800 Ankara, Turkey; Graduate School of Natural and Applied Sciences, Department of Biotechnology, Middle East Technical University, 06800 Ankara, Turkey.

出版信息

Trends Biotechnol. 2016 Apr;34(4):329-345. doi: 10.1016/j.tibtech.2015.12.008. Epub 2016 Jan 15.

Abstract

Bacillus subtilis is a highly promising production system for various biomolecules. This review begins with the algorithm of fed-batch operations (FBOs) and then illustrates the approaches to design the initial production medium and/or feed stream. Additionally, the feeding strategies developed with or without feedback control for fed-batch B. subtilis fermentations were compiled with a special emphasis on recombinant protein (r-protein) production. For biomolecule production by wild-type B. subtilis, due to the different intracellular production patterns, no consensus exists on the FBO strategy that gives the maximum productivity, whereas for r-protein production appropriate feeding strategies vary depending on the promoter used. Thus, we conclude that the B. subtilis community is still seeking an approved strong promoter and generalized FBO strategies.

摘要

枯草芽孢杆菌是一种极具潜力的用于生产各种生物分子的系统。本综述首先介绍分批补料操作(FBOs)的算法,然后阐述设计初始生产培养基和/或补料流的方法。此外,还汇总了用于枯草芽孢杆菌分批补料发酵的、有或没有反馈控制的补料策略,特别强调了重组蛋白(r-蛋白)的生产。对于野生型枯草芽孢杆菌生产生物分子而言,由于细胞内生产模式不同,关于能实现最大生产力的分批补料操作策略尚无共识,而对于r-蛋白生产,合适的补料策略因所使用的启动子而异。因此,我们得出结论,枯草芽孢杆菌研究群体仍在寻找一个公认的强启动子和通用的分批补料操作策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验