Garvey W T, Huecksteadt T P, Lima F B, Birnbaum M J
Section of Endocrinology and Metabolism, VA Medical Center Indiana University School of Medicine, Indianapolis 46202.
Mol Endocrinol. 1989 Jul;3(7):1132-41. doi: 10.1210/mend-3-7-1132.
In two cellular models of insulin resistance we measured glucose transport activity, total glucose transporter number using the cytochalasin B binding assay, and expression of a transporter mRNA species specifically hybridizing with cDNA cloned from brain. In primary cultured adipocytes, chronic exposure to glucose plus insulin (24 h), but neither agent alone, markedly decreased (less than 50%) glucose transport activity; however, neither glucose nor insulin regulated the number of glucose transporters or levels of transporter mRNA whether normalized per total RNA, RNA per cell, or as a fraction of CHO-B mRNA. On the other hand, chronic treatment with 30 nM dexamethasone (24 h) decreased basal and maximal transport rates (approximately 75%), led to a 40% depletion in total cellular glucose transporters, and decreased transporter mRNA by 57-59% (t 1/2 = 10 h; ED50 = 4-5 nm). Dexamethasone's effects to decrease transport rates, transporter protein, and mRNA were inhibited by coincubation with insulin. Dexamethasone did not alter the degradation rate of transporter mRNA relative to that in control cells indicating a lack of effect on mRNA stability. Also, suppression of transporter mRNA did not appear to require ongoing protein synthesis since the effect was observed when dexamethasone was added to cycloheximide-treated cells; however, cycloheximide per se specifically increased transporter mRNA 4-fold. We conclude in adipocytes: 1) glucose and insulin (24 h) do not regulate the total number of glucose transporters or expression of mRNA encoding a transporter species cloned from brain. 2) Long-term dexamethasone treatment reduces the cellular abundance of both glucose transporters and the specific transporter mRNA; these effects may be due to inhibition of gene transcription since dexamethasone does not influence transporter mRNA stability. 3) Insulin heterologously inhibits regulation of the glucose transport system by dexamethasone. 4) Dexamethasone-mediated insulin resistance is due in part to regulation of a glucose transporter species encoded by cDNA cloned from brain. These observations may be relevant to mechanisms of insulin resistance in clinical states of hypercortisolism.
在两种胰岛素抵抗的细胞模型中,我们使用细胞松弛素B结合试验测量了葡萄糖转运活性、葡萄糖转运体总数,并检测了与从大脑克隆的cDNA特异性杂交的转运体mRNA种类的表达。在原代培养的脂肪细胞中,长期暴露于葡萄糖加胰岛素(24小时),而不是单独使用任何一种试剂,会显著降低(低于50%)葡萄糖转运活性;然而,无论以总RNA、每个细胞的RNA或作为CHO-B mRNA的一部分进行标准化,葡萄糖和胰岛素都不会调节葡萄糖转运体的数量或转运体mRNA的水平。另一方面,用30 nM地塞米松长期处理(24小时)会降低基础和最大转运速率(约75%),导致细胞内总葡萄糖转运体减少40%,并使转运体mRNA减少57 - 59%(t1/2 = 10小时;ED50 = 4 - 5 nM)。与胰岛素共同孵育可抑制地塞米松降低转运速率、转运体蛋白和mRNA的作用。地塞米松相对于对照细胞并未改变转运体mRNA的降解速率,表明其对mRNA稳定性没有影响。此外,转运体mRNA的抑制似乎不需要持续的蛋白质合成,因为当地塞米松添加到用环己酰亚胺处理的细胞中时也观察到了这种效应;然而,环己酰亚胺本身会使转运体mRNA特异性增加4倍。我们在脂肪细胞中得出以下结论:1)葡萄糖和胰岛素(24小时)不会调节葡萄糖转运体的总数或从大脑克隆的转运体种类的mRNA表达。2)长期地塞米松处理会降低葡萄糖转运体和特定转运体mRNA的细胞丰度;这些效应可能是由于基因转录受到抑制,因为地塞米松不影响转运体mRNA的稳定性。3)胰岛素可异源性抑制地塞米松对葡萄糖转运系统的调节。4)地塞米松介导的胰岛素抵抗部分归因于对从大脑克隆的cDNA编码的葡萄糖转运体种类的调节。这些观察结果可能与高皮质醇血症临床状态下的胰岛素抵抗机制有关。