Suppr超能文献

葡萄糖和胰岛素通过不同机制长期调节BC3H1肌细胞中的胰岛素作用。对葡萄糖转运蛋白基因表达的影响。

Glucose and insulin chronically regulate insulin action via different mechanisms in BC3H1 myocytes. Effects on glucose transporter gene expression.

作者信息

Mayor P, Maianu L, Garvey W T

机构信息

Section of Endocrinology, Indianapolis Veterans Administration Medical Center, IN.

出版信息

Diabetes. 1992 Mar;41(3):274-85. doi: 10.2337/diab.41.3.274.

Abstract

We previously reported that, in primary cultured adipocytes, chronic exposure to glucose plus insulin impairs the insulin-responsive glucose transport system. In this study, we examined regulation of glucose transport in BC3H1 myocytes as a model for muscle and found important differences between BC3H1 cells and adipocytes. In myocytes, chronic glucose exposure per se (25 mM) decreased basal glucose transport activity by 78% and insulin's acute ability to maximally stimulate transport by 68% (ED50 approximately 2.5 mM; T1/2 approximately 4 h). D-Mannose and 3-O-methyl-glucose diminished transport rates with approximately 100 and 50% of the potency of D-glucose, respectively, whereas L-glucose, D-fructose, and D-galactose were inactive. Chronic glucose exposure also reduced cell surface insulin binding by 30% via an apparent decrease in receptor affinity, and this effect was associated with a comparable rightward shift in the insulin-glucose transport dose-response curve. In other studies, persistent stimulation with 15 nM insulin also decreased maximally stimulated glucose transport activity, which was independent and additive to the regulatory effect of glucose. Moreover, glucose and insulin-induced insulin resistance via different mechanisms. Glucose (25 mM) reduced the number of cellular glucose transporter proteins by 84% and levels of GLUT1 transporter mRNA by 50% (whether normalized to total RNA or CHO-B mRNA). In contrast, chronic insulin exposure led to a 2.1-fold increase in GLUT1 mRNA but did not alter cellular levels of transporter protein. Cotreatment with glucose prevented the insulin-induced rise in GLUT1 mRNA. BC3H1 cells did not express GLUT4 mRNA that encodes the major transporter isoform in skeletal muscle. In conclusion, in BC3H1 myocytes 1) glucose diminished insulin sensitivity by decreasing insulin receptor binding affinity and decreased basal and maximally insulin-stimulated glucose transport rates via cellular depletion of glucose transporters and suppression of GLUT1 mRNA; 2) chronic insulin exposure exerted an independent and additive effect to reduce maximal transport activity; however, insulin increased levels of GLUT1 mRNA and did not alter the cellular content of glucose transporters; and 3) although BC3H1 cells are commonly used as a model for skeletal muscle, studies examining glucose transport should be interpreted cautiously due to the absence of GLUT4 expression. Nevertheless, the data generally support the idea that, in non-insulin-dependent diabetes mellitus, hyperglycemia and hyperinsulinemia can induce or exacerbate insulin resistance in target tissues.

摘要

我们之前报道过,在原代培养的脂肪细胞中,长期暴露于葡萄糖加胰岛素会损害胰岛素反应性葡萄糖转运系统。在本研究中,我们以BC3H1肌细胞作为肌肉模型,研究了葡萄糖转运的调节情况,发现BC3H1细胞与脂肪细胞之间存在重要差异。在肌细胞中,单纯长期暴露于葡萄糖(25 mM)会使基础葡萄糖转运活性降低78%,胰岛素最大程度刺激转运的急性能力降低68%(半数有效浓度约为2.5 mM;半衰期约为4小时)。D-甘露糖和3-O-甲基葡萄糖降低转运速率的效力分别约为D-葡萄糖的100%和50%,而L-葡萄糖、D-果糖和D-半乳糖则无活性。长期葡萄糖暴露还通过受体亲和力的明显降低使细胞表面胰岛素结合减少30%,这种效应与胰岛素-葡萄糖转运剂量反应曲线的类似右移相关。在其他研究中,用15 nM胰岛素持续刺激也会降低最大刺激的葡萄糖转运活性,这与葡萄糖的调节作用相互独立且具有累加性。此外,葡萄糖和胰岛素通过不同机制诱导胰岛素抵抗。葡萄糖(25 mM)使细胞内葡萄糖转运蛋白数量减少84%,GLUT1转运蛋白mRNA水平降低50%(无论以总RNA还是CHO-B mRNA进行标准化)。相比之下,长期胰岛素暴露导致GLUT1 mRNA增加2.1倍,但未改变转运蛋白的细胞水平。葡萄糖与胰岛素共同处理可阻止胰岛素诱导的GLUT1 mRNA升高。BC3H1细胞不表达编码骨骼肌中主要转运异构体的GLUT4 mRNA。总之,在BC3H1肌细胞中:1)葡萄糖通过降低胰岛素受体结合亲和力降低胰岛素敏感性,并通过细胞内葡萄糖转运蛋白的耗竭和GLUT1 mRNA的抑制降低基础和最大胰岛素刺激的葡萄糖转运速率;2)长期胰岛素暴露对降低最大转运活性具有独立且累加的作用;然而,胰岛素增加了GLUT1 mRNA水平,并未改变葡萄糖转运蛋白的细胞含量;3)尽管BC3H1细胞通常被用作骨骼肌模型,但由于缺乏GLUT4表达,在研究葡萄糖转运时应谨慎解读相关研究结果。尽管如此,这些数据总体上支持这样一种观点,即在非胰岛素依赖型糖尿病中,高血糖和高胰岛素血症可诱导或加剧靶组织中的胰岛素抵抗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验