Suppr超能文献

线粒体复合体I的缺血性A/D转换及其在活性氧生成中的作用。

Ischemic A/D transition of mitochondrial complex I and its role in ROS generation.

作者信息

Dröse Stefan, Stepanova Anna, Galkin Alexander

机构信息

Clinic of Anesthesiology, Intensive-Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main 60590, Germany.

Medical Biology Centre, School of Biological Sciences, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.

出版信息

Biochim Biophys Acta. 2016 Jul;1857(7):946-57. doi: 10.1016/j.bbabio.2015.12.013. Epub 2016 Jan 9.

Abstract

Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a key enzyme in cellular energy metabolism and provides approximately 40% of the proton-motive force that is utilized during mitochondrial ATP production. The dysregulation of complex I function--either genetically, pharmacologically, or metabolically induced--has severe pathophysiological consequences that often involve an imbalance in the production of reactive oxygen species (ROS). Slow transition of the active (A) enzyme to the deactive, dormant (D) form takes place during ischemia in metabolically active organs such as the heart and brain. The reactivation of complex I occurs upon reoxygenation of ischemic tissue, a process that is usually accompanied by an increase in cellular ROS production. Complex I in the D-form serves as a protective mechanism preventing the oxidative burst upon reperfusion. Conversely, however, the D-form is more vulnerable to oxidative/nitrosative damage. Understanding the so-called active/deactive (A/D) transition may contribute to the development of new therapeutic interventions for conditions like stroke, cardiac infarction, and other ischemia-associated pathologies. In this review, we summarize current knowledge on the mechanism of A/D transition of mitochondrial complex I considering recently available structural data and site-specific labeling experiments. In addition, this review discusses in detail the impact of the A/D transition on ROS production by complex I and the S-nitrosation of a critical cysteine residue of subunit ND3 as a strategy to prevent oxidative damage and tissue damage during ischemia-reperfusion injury. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

摘要

线粒体复合物I(NADH:泛醌氧化还原酶)是细胞能量代谢中的关键酶,在线粒体ATP生成过程中提供约40%的质子动力。复合物I功能失调——无论是由基因、药物或代谢诱导——都会产生严重的病理生理后果,通常涉及活性氧(ROS)生成失衡。在心脏和大脑等代谢活跃器官缺血期间,活性(A)酶会缓慢转变为失活的休眠(D)形式。缺血组织再灌注时复合物I会重新激活,这一过程通常伴随着细胞ROS生成增加。D形式的复合物I作为一种保护机制,可防止再灌注时的氧化爆发。然而,相反的是,D形式更容易受到氧化/亚硝化损伤。了解所谓的活性/失活(A/D)转变可能有助于开发针对中风、心肌梗死和其他缺血相关病症的新治疗干预措施。在本综述中,我们结合最近可得的结构数据和位点特异性标记实验,总结了目前关于线粒体复合物I的A/D转变机制的知识。此外,本综述详细讨论了A/D转变对复合物I产生ROS的影响,以及亚基ND3关键半胱氨酸残基的S-亚硝化作为预防缺血再灌注损伤期间氧化损伤和组织损伤的策略。本文是由Volker Zickermann和Ulrich Brandt编辑的名为《呼吸复合物I》特刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb8d/4893024/ec7cda07a6cf/fx1.jpg

相似文献

1
Ischemic A/D transition of mitochondrial complex I and its role in ROS generation.
Biochim Biophys Acta. 2016 Jul;1857(7):946-57. doi: 10.1016/j.bbabio.2015.12.013. Epub 2016 Jan 9.
2
Structure and function of mitochondrial complex I.
Biochim Biophys Acta. 2016 Jul;1857(7):902-14. doi: 10.1016/j.bbabio.2016.02.013. Epub 2016 Feb 24.
3
Molecular mechanism and physiological role of active-deactive transition of mitochondrial complex I.
Biochem Soc Trans. 2013 Oct;41(5):1325-30. doi: 10.1042/BST20130088.
4
Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.
Biochim Biophys Acta. 2014 Aug;1844(8):1344-54. doi: 10.1016/j.bbapap.2014.02.006. Epub 2014 Feb 19.
5
Oxidation of NADH and ROS production by respiratory complex I.
Biochim Biophys Acta. 2016 Jul;1857(7):863-71. doi: 10.1016/j.bbabio.2015.11.004. Epub 2015 Nov 10.
6
Complex I function in mitochondrial supercomplexes.
Biochim Biophys Acta. 2016 Jul;1857(7):991-1000. doi: 10.1016/j.bbabio.2016.01.013. Epub 2016 Jan 25.
7
Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I.
Biochim Biophys Acta. 2016 Jul;1857(7):872-83. doi: 10.1016/j.bbabio.2015.12.009. Epub 2015 Dec 22.
8
Conformational change of mitochondrial complex I increases ROS sensitivity during ischemia.
Antioxid Redox Signal. 2013 Nov 1;19(13):1459-68. doi: 10.1089/ars.2012.4698. Epub 2013 Mar 29.
9
Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I.
Nat Med. 2013 Jun;19(6):753-9. doi: 10.1038/nm.3212. Epub 2013 May 26.
10
Attenuation of oxidative damage by targeting mitochondrial complex I in neonatal hypoxic-ischemic brain injury.
Free Radic Biol Med. 2018 Aug 20;124:517-524. doi: 10.1016/j.freeradbiomed.2018.06.040. Epub 2018 Jul 3.

引用本文的文献

1
Dysfunctional Electron Transport Chain Assembly in COXPD8.
J Cardiovasc Dev Dis. 2025 Aug 20;12(8):318. doi: 10.3390/jcdd12080318.
3
Potential for flexible lactate shuttling between astrocytes and neurons to mitigate against diving-induced hypoxia.
Front Neuroanat. 2025 Jun 13;19:1607396. doi: 10.3389/fnana.2025.1607396. eCollection 2025.
4
Targeting the Electron Transport System for Enhanced Longevity.
Biomolecules. 2025 Apr 23;15(5):614. doi: 10.3390/biom15050614.
5
Gene therapy prevents onset of mitochondrial cardiomyopathy in neonatal mice with Ndufs6 deficiency.
Cell Death Discov. 2025 May 22;11(1):249. doi: 10.1038/s41420-025-02524-7.
6
MitoSNO inhibits mitochondrial hydrogen peroxide generation by α-ketoglutarate dehydrogenase.
J Biol Chem. 2025 Apr 16;301(6):108510. doi: 10.1016/j.jbc.2025.108510.
8
The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke.
Biomolecules. 2024 Sep 6;14(9):1130. doi: 10.3390/biom14091130.
9
Mitochondrial complex-1 as a therapeutic target for cardiac diseases.
Mol Cell Biochem. 2025 Feb;480(2):869-890. doi: 10.1007/s11010-024-05074-1. Epub 2024 Jul 20.

本文引用的文献

1
Toxicity of a novel therapeutic agent targeting mitochondrial complex I.
Clin Pharmacol Ther. 2015 Nov;98(5):551-9. doi: 10.1002/cpt.178. Epub 2015 Aug 4.
3
Effect of monovalent cations on the kinetics of hypoxic conformational change of mitochondrial complex I.
Biochim Biophys Acta. 2015 Oct;1847(10):1085-92. doi: 10.1016/j.bbabio.2015.05.012. Epub 2015 May 22.
5
Reactive Oxygen Species Production by Escherichia coli Respiratory Complex I.
Biochemistry. 2015 May 12;54(18):2799-801. doi: 10.1021/acs.biochem.5b00160. Epub 2015 Apr 28.
6
Selective inhibition of deactivated mitochondrial complex I by biguanides.
Biochemistry. 2015 Mar 24;54(11):2011-21. doi: 10.1021/bi501473h. Epub 2015 Mar 9.
7
Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I.
Science. 2015 Jan 2;347(6217):44-9. doi: 10.1126/science.1259859.
8
Generator-specific targets of mitochondrial reactive oxygen species.
Free Radic Biol Med. 2015 Jan;78:1-10. doi: 10.1016/j.freeradbiomed.2014.10.511. Epub 2014 Oct 29.
9
Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.
Nature. 2014 Nov 20;515(7527):431-435. doi: 10.1038/nature13909. Epub 2014 Nov 5.
10
Architecture of mammalian respiratory complex I.
Nature. 2014 Nov 6;515(7525):80-84. doi: 10.1038/nature13686. Epub 2014 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验