Medical Research Council Mitochondrial Biology Unit, Cambridge, UK.
Nat Med. 2013 Jun;19(6):753-9. doi: 10.1038/nm.3212. Epub 2013 May 26.
Oxidative damage from elevated production of reactive oxygen species (ROS) contributes to ischemia-reperfusion injury in myocardial infarction and stroke. The mechanism by which the increase in ROS occurs is not known, and it is unclear how this increase can be prevented. A wide variety of nitric oxide donors and S-nitrosating agents protect the ischemic myocardium from infarction, but the responsible mechanisms are unclear. Here we used a mitochondria-selective S-nitrosating agent, MitoSNO, to determine how mitochondrial S-nitrosation at the reperfusion phase of myocardial infarction is cardioprotective in vivo in mice. We found that protection is due to the S-nitrosation of mitochondrial complex I, which is the entry point for electrons from NADH into the respiratory chain. Reversible S-nitrosation of complex I slows the reactivation of mitochondria during the crucial first minutes of the reperfusion of ischemic tissue, thereby decreasing ROS production, oxidative damage and tissue necrosis. Inhibition of complex I is afforded by the selective S-nitrosation of Cys39 on the ND3 subunit, which becomes susceptible to modification only after ischemia. Our results identify rapid complex I reactivation as a central pathological feature of ischemia-reperfusion injury and show that preventing this reactivation by modification of a cysteine switch is a robust cardioprotective mechanism and hence a rational therapeutic strategy.
活性氧(ROS)产生增加导致心肌梗死和中风的缺血再灌注损伤。ROS 增加的机制尚不清楚,也不清楚如何预防这种增加。各种各样的一氧化氮供体和 S-亚硝化试剂可保护缺血心肌免于梗死,但负责的机制尚不清楚。在这里,我们使用线粒体选择性 S-亚硝化试剂 MitoSNO,以确定在体内的心肌梗死再灌注阶段,线粒体 S-亚硝化如何在体内起到保护作用。我们发现,保护作用归因于线粒体复合物 I 的 S-亚硝化,这是 NADH 电子进入呼吸链的入口。复合物 I 的可逆 S-亚硝化在缺血组织再灌注的最初关键几分钟内减缓线粒体的重新激活,从而减少 ROS 产生、氧化损伤和组织坏死。复合物 I 的抑制是通过 ND3 亚基上 Cys39 的选择性 S-亚硝化来实现的,只有在缺血后 Cys39 才变得容易受到修饰。我们的结果表明,快速的复合物 I 再激活是缺血再灌注损伤的一个核心病理特征,并表明通过修饰半胱氨酸开关来防止这种再激活是一种强大的心脏保护机制,因此也是一种合理的治疗策略。