Rajapakse Maneeshin Y, Fowler Peter E, Eiceman Gary A, Stone John A
Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States.
Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada.
J Phys Chem A. 2016 Feb 11;120(5):690-8. doi: 10.1021/acs.jpca.5b10765. Epub 2016 Feb 1.
The kinetics for thermal dissociations of the chloride adducts of the nitrate explosives 1,3-dinitroglycerin (1,3-NG), 1,2-dinitroglycerin (1,2-NG), the nitrite explosive 3,4-dinitrotoluene (3,4-DNT), and the explosive taggant 2,3-dimethyl-2,3-dinitrobutane (DMNB) have been studied by atmospheric pressure ion mobility spectrometry. Both 1,3-NG·Cl(-) and1,2-NG·Cl(-) decompose in a gas-phase SN2 reaction in which Cl(-) displaces NO3(-) while 3,4-DNT·Cl(-) and DMNB·Cl(-) decompose by loss of Cl(-). The determined activation energy (kJ mol(-1)) and pre-exponential factor (s(-1)) values for the dissociations respectively are 1,3-NG·Cl(-), 86 ± 2 and 2.2 × 10(12); 1,2-NG·Cl(-), 97 ± 2 and 3.5 × 10(12); 3,4-DNT·Cl(-), 81 ± 2 and 4.8 × 10(13); and DMNB·Cl(-), 68 ± 2 and 9.7 × 10(11). Calculations by density functional theory show the structures of the nitrate ester adducts involve three hydrogen bonds: one from the hydroxyl group and the other two from the two nitrated carbons. The relative Cl(-) dissociation energies of the nitrates together with the previously reported smaller value for glycerol trinitrate and the calculated highest value for glycerol 1-mononitrate are explicable in terms of the number of hydroxyl hydrogen bond participants. The theoretical enthalpy changes for the nitrate ester displacement reactions are in agreement with those derived from the experimental activation energies but considerably higher for the nitro compounds.
通过常压离子迁移谱研究了硝酸酯炸药1,3 -二硝基甘油(1,3 - NG)、1,2 -二硝基甘油(1,2 - NG)、亚硝酸酯炸药3,4 -二硝基甲苯(3,4 - DNT)以及炸药示踪剂2,3 -二甲基 - 2,3 -二硝基丁烷(DMNB)的氯化物加合物的热解离动力学。1,3 - NG·Cl⁻和1,2 - NG·Cl⁻均在气相SN2反应中分解,其中Cl⁻取代NO₃⁻,而3,4 - DNT·Cl⁻和DMNB·Cl⁻则通过Cl⁻的损失而分解。这些解离反应的测定活化能(kJ mol⁻¹)和指前因子(s⁻¹)值分别为:1,3 - NG·Cl⁻,86±2和2.2×10¹²;1,2 - NG·Cl⁻,97±2和3.5×10¹²;3,4 - DNT·Cl⁻,81±2和4.8×10¹³;以及DMNB·Cl⁻,68±2和9.7×10¹¹。密度泛函理论计算表明,硝酸酯加合物的结构涉及三个氢键:一个来自羟基,另外两个来自两个硝化碳。硝酸盐的相对Cl⁻解离能,连同先前报道的三硝基甘油的较小值以及计算得到的甘油1 -单硝酸酯的最高值,根据羟基氢键参与的数量是可以解释的。硝酸酯置换反应的理论焓变与从实验活化能推导得到的结果一致,但对于硝基化合物则要高得多。