Sauer Martin, Stannat Wilhelm
Institut für Mathematik, Technische Universität Berlin, Straße des 17, Juni 136, 10623, Berlin, Germany.
Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115, Berlin, Germany.
J Comput Neurosci. 2016 Feb;40(1):103-11. doi: 10.1007/s10827-015-0586-0. Epub 2016 Jan 18.
We introduce a method for computing probabilities for spontaneous activity and propagation failure of the action potential in spatially extended, conductance-based neuronal models subject to noise, based on statistical properties of the membrane potential. We compare different estimators with respect to the quality of detection, computational costs and robustness and propose the integral of the membrane potential along the axon as an appropriate estimator to detect both spontaneous activity and propagation failure. Performing a model reduction we achieve a simplified analytical expression based on the linearization at the resting potential (resp. the traveling action potential). This allows to approximate the probabilities for spontaneous activity and propagation failure in terms of (classical) hitting probabilities of one-dimensional linear stochastic differential equations. The quality of the approximation with respect to the noise amplitude is discussed and illustrated with numerical results for the spatially extended Hodgkin-Huxley equations. Python simulation code is supplied on GitHub under the link https://github.com/deristnochda/Hodgkin-Huxley-SPDE.
我们基于膜电位的统计特性,介绍一种在受噪声影响的空间扩展、基于电导的神经元模型中计算动作电位自发活动和传播失败概率的方法。我们就检测质量、计算成本和稳健性对不同的估计器进行了比较,并提出沿轴突的膜电位积分作为检测自发活动和传播失败的合适估计器。通过模型简化,我们基于静息电位(相应地,行进的动作电位)处的线性化得到了一个简化的解析表达式。这使得能够根据一维线性随机微分方程的(经典)击中概率来近似自发活动和传播失败的概率。讨论了关于噪声幅度的近似质量,并用空间扩展的霍奇金 - 赫胥黎方程的数值结果进行了说明。Python 模拟代码可在 GitHub 上的链接 https://github.com/deristnochda/Hodgkin-Huxley-SPDE 获得。