Suppr超能文献

弱噪声的各种空间分布对节律性放电的影响。

The effects of various spatial distributions of weak noise on rhythmic spiking.

作者信息

Tuckwell Henry C, Jost Jürgen

机构信息

Max Planck Institute for Mathematics in Sciences, Inselstr 22., 04103, Leipzig, Germany.

出版信息

J Comput Neurosci. 2011 Apr;30(2):361-71. doi: 10.1007/s10827-010-0260-5. Epub 2010 Jul 22.

Abstract

We consider the response of the classical Hodgkin-Huxley (HH) spatial system in the weak to intermediate noise regime near the bifurcation to repetitive spiking. The deterministic component of the input (signal) is restricted to a small segment near the origin whereas noise, with parameter σ, occurs either only in the signal region or throughout the whole neuron. In both cases small noise inhibits the spiking and there is a minimum in the spike counts at σ ≈ 0.15. At the same value of σ, the variance of the spike counts undergoes a pronounced maximum. For spatially restricted noise, the spike count continues to increase beyond the minimum until σ=0.5, but in the case of spatially extended noise the spike count begins to decline around σ=0.35 to give a local maximum. For both spatial distributions of noise, the variance of the spike count is found to also have a local minimum at about σ=0.4. Examples are given of the probability distributions of the spike counts and the spatial distributions of spikes with varying noise level. The differences in behaviours of the spike counts as noise increases beyond 0.3 are attributable to noise-induced spiking outside the signal region, which has a larger probability of occurrence when the noise is over an extended region. This aspect is investigated by ascertaining the probability of noise-induced spiking as a function of noise level and examination of the corresponding latency distributions. These findings prompt a definition of weak noise in the standard HH model as that for which the probability of secondary phenomena is negligible, which occurs when σ is less than about 0.3. Finally, if signal and weak (σ<0.3) noise are applied on disjoint intervals, then the noise has no effect on the instigation or propagation of spikes, no matter how large its region of application. These results are expected to apply to type 2 neurons in general, including the majority of cortical pyramidal cells.

摘要

我们研究了经典霍奇金-赫胥黎(HH)空间系统在接近重复放电分岔处的弱到中等噪声区域的响应。输入(信号)的确定性成分被限制在原点附近的一小段区域,而参数为σ的噪声要么仅出现在信号区域,要么贯穿整个神经元。在这两种情况下,小噪声都会抑制放电,并且在σ≈0.15时放电次数出现最小值。在相同的σ值下,放电次数的方差会经历一个明显的最大值。对于空间受限噪声,放电次数在最小值之后继续增加,直到σ = 0.5,但对于空间扩展噪声,放电次数在σ≈0.35左右开始下降,出现一个局部最大值。对于这两种噪声空间分布,发现放电次数的方差在约σ = 0.4时也有一个局部最小值。给出了不同噪声水平下放电次数的概率分布和放电的空间分布示例。当噪声增加超过0.3时,放电次数行为的差异可归因于信号区域之外的噪声诱导放电,当噪声在扩展区域时,这种情况发生的概率更大。通过确定噪声诱导放电的概率作为噪声水平的函数并检查相应的潜伏期分布来研究这一方面。这些发现促使我们将标准HH模型中的弱噪声定义为二次现象概率可忽略不计的情况,即当σ小于约0.3时出现。最后,如果在不相交的时间间隔上施加信号和弱(σ<0.3)噪声,那么无论噪声的应用区域有多大,噪声对放电的激发或传播都没有影响。预计这些结果一般适用于2型神经元,包括大多数皮质锥体细胞。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验