Max-Planck-Institut für Festkörperforschung , Heisenbergstraße 1, 70569 Stuttgart, Germany.
The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom.
ACS Nano. 2016 Feb 23;10(2):2214-24. doi: 10.1021/acsnano.5b06768. Epub 2016 Feb 1.
We investigated experimentally and numerically in the optical near-field a plasmonic model system similar to a dolmen-type structure for phenomena such as plasmon-induced transparency. Through engineering of coupling strength, structure orientation, and incident angle and phase of the excitation source it was possible to control near-field excitation of the dark modes. We showed that quantitative analysis of near-field amplitude and excitation strength provided essential information that allowed identifying the interaction between the bright and the dark mode and how it causes the formation of plasmon-induced transparency features and a Fano resonance. In addition, we introduced a mechanism to excite field distributions in plasmonic structures that cannot be accessed directly using far-field illumination and demonstrated the excitation of a dark mode akin to a symmetry-forbidden plasmonic breathing mode using a linearly polarized far-field source.
我们在光学近场中实验和数值研究了类似于多姆式结构的等离子体模型系统,以研究等离子体诱导透明等现象。通过控制耦合强度、结构方向以及激励源的入射角度和相位,可以控制暗模的近场激发。我们表明,对近场振幅和激发强度的定量分析提供了重要信息,这些信息可以识别亮模和暗模之间的相互作用,以及它如何导致等离子体诱导透明特征和 Fano 共振的形成。此外,我们引入了一种机制来激发等离子体结构中的场分布,这些场分布无法直接使用远场照明来激发,并使用线偏振远场源演示了暗模的激发,类似于对称禁戒的等离子体呼吸模式。