Yang Hongyan, Chen Yupeng, Liu Mengyin, Xiao Gongli, Luo Yunhan, Liu Houquan, Li Jianqing, Yuan Libo
School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China.
Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China.
Nanomaterials (Basel). 2021 Jun 16;11(6):1583. doi: 10.3390/nano11061583.
We propose a high quality-factor (Q-factor) multi-Fano resonance hybrid metamaterial waveguide (HMW) sensor. By ingeniously designing a metal/dielectric hybrid waveguide structure, we can effectively tailor multi-Fano resonance peaks' reflectance spectrum appearing in the visible wavelength range. In order to balance the high Q-factor and the best Fano resonance modulation depth, numerical calculation results demonstrated that the ultra-narrow linewidth resolution, the single-side quality factor, and Figure of Merit (FOM) can reach 1.7 nm, 690, and 236, respectively. Compared with the reported high Q-value (483) in the near-infrared band, an increase of 30% is achieved. Our proposed design may extend the application of Fano resonance in HMW from mid-infrared, terahertz band to visible band and have important research value in the fields of multi-wavelength non-labeled biosensing and slow light devices.
我们提出了一种高品质因数(Q 因子)多法诺共振混合超材料波导(HMW)传感器。通过巧妙设计金属/介质混合波导结构,我们能够有效调整出现在可见波长范围内的多法诺共振峰的反射光谱。为了平衡高 Q 因子和最佳法诺共振调制深度,数值计算结果表明,超窄线宽分辨率、单边品质因数和品质因数优值(FOM)分别可达到 1.7 nm、690 和 236。与近红外波段报道的高 Q 值(483)相比,实现了 30%的增长。我们提出的设计可能会将法诺共振在 HMW 中的应用从 中红外、太赫兹波段扩展到可见光波段,并在多波长无标记生物传感和慢光器件领域具有重要的研究价值。