Chen Wei
Institut für Theoretische Physik, ETH Zürich, 8093 Zürich, Switzerland.
J Phys Condens Matter. 2016 Feb 10;28(5):055601. doi: 10.1088/0953-8984/28/5/055601. Epub 2016 Jan 20.
Topologically ordered systems are characterized by topological invariants that are often calculated from the momentum space integration of a certain function that represents the curvature of the many-body state. The curvature function may be Berry curvature, Berry connection, or other quantities depending on the system. Akin to stretching a messy string to reveal the number of knots it contains, a scaling procedure is proposed for the curvature function in inversion symmetric systems, from which the topological phase transition can be identified from the flow of the driving energy parameters that control the topology (hopping, chemical potential, etc) under scaling. At an infinitesimal operation, one obtains the renormalization group (RG) equations for the driving energy parameters. A length scale defined from the curvature function near the gap-closing momentum is suggested to characterize the scale invariance at critical points and fixed points, and displays a universal critical behavior in a variety of systems examined.
拓扑有序系统的特征是拓扑不变量,这些不变量通常通过对某个表示多体状态曲率的函数进行动量空间积分来计算。曲率函数可能是贝里曲率、贝里联络或取决于系统的其他量。类似于拉伸一根杂乱的绳子以揭示其包含的结的数量,本文针对具有反演对称性的系统中的曲率函数提出了一种标度程序,通过该程序可以根据在标度下控制拓扑结构的驱动能量参数(跳跃、化学势等)的流动来识别拓扑相变。在无穷小操作下,可以得到驱动能量参数的重整化群(RG)方程。建议从能隙闭合动量附近的曲率函数定义一个长度尺度,以表征临界点和不动点处的尺度不变性,并在各种研究的系统中显示出普遍的临界行为。