Suppr超能文献

量子临界处的多临界拓扑转变。

Multi-critical topological transition at quantum criticality.

作者信息

Kumar Ranjith R, Kartik Y R, Rahul S, Sarkar Sujit

机构信息

Department of Theoretical Sciences, Poornaprajna Institute of Scientific Research, 4, Sadashivanagar, Bangalore, 560 080, India.

Graduate Studies, Manipal Academy of Higher Education, Madhava Nagar, Manipal, 576104, India.

出版信息

Sci Rep. 2021 Jan 13;11(1):1004. doi: 10.1038/s41598-020-80337-7.

Abstract

The investigation and characterization of topological quantum phase transition between gapless phases is one of the recent interest of research in topological states of matter. We consider transverse field Ising model with three spin interaction in one dimension and observe a topological transition between gapless phases on one of the critical lines of this model. We study the distinct nature of these gapless phases and show that they belong to different universality classes. The topological invariant number (winding number) characterize different topological phases for the different regime of parameter space. We observe the evidence of two multi-critical points, one is topologically trivial and the other one is topologically active. Topological quantum phase transition between the gapless phases on the critical line occurs through the non-trivial multi-critical point in the Lifshitz universality class. We calculate and analyze the behavior of Wannier state correlation function close to the multi-critical point and confirm the topological transition between gapless phases. We show the breakdown of Lorentz invariance at this multi-critical point through the energy dispersion analysis. We also show that the scaling theories and curvature function renormalization group can also be effectively used to understand the topological quantum phase transitions between gapless phases. The model Hamiltonian which we study is more applicable for the system with gapless excitations, where the conventional concept of topological quantum phase transition fails.

摘要

无隙相之间拓扑量子相变的研究与表征是近期拓扑物态研究的热点之一。我们考虑一维具有三自旋相互作用的横场伊辛模型,并在该模型的一条临界线上观测到了无隙相之间的拓扑相变。我们研究了这些无隙相的不同性质,并表明它们属于不同的普适类。拓扑不变数(缠绕数)在参数空间的不同区域表征不同的拓扑相。我们观测到了两个多临界点的证据,一个是拓扑平凡的,另一个是拓扑活跃的。临界线上无隙相之间的拓扑量子相变通过里夫希茨普适类中的非平凡多临界点发生。我们计算并分析了接近多临界点时的万尼尔态关联函数的行为,并证实了无隙相之间的拓扑相变。通过能量色散分析,我们展示了在这个多临界点处洛伦兹不变性的破缺。我们还表明,标度理论和曲率函数重整化群也能有效地用于理解无隙相之间的拓扑量子相变。我们所研究的模型哈密顿量更适用于具有无隙激发的系统,在这类系统中传统的拓扑量子相变概念失效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3d3/7806738/97f4632c513a/41598_2020_80337_Fig1_HTML.jpg

相似文献

1
Multi-critical topological transition at quantum criticality.
Sci Rep. 2021 Jan 13;11(1):1004. doi: 10.1038/s41598-020-80337-7.
2
Nature of Topological Phase Transition of Kitaev Quantum Spin Liquids.
Phys Rev Lett. 2024 Oct 4;133(14):146603. doi: 10.1103/PhysRevLett.133.146603.
3
Topological Quantum Critical Points in the Extended Bose-Hubbard Model.
Phys Rev Lett. 2022 Jan 28;128(4):043402. doi: 10.1103/PhysRevLett.128.043402.
4
Strain-induced topological magnon phase transitions: applications to kagome-lattice ferromagnets.
J Phys Condens Matter. 2018 Jun 20;30(24):245803. doi: 10.1088/1361-648X/aac365. Epub 2018 May 9.
5
Topological quantum criticality in non-Hermitian extended Kitaev chain.
Sci Rep. 2022 Apr 28;12(1):6993. doi: 10.1038/s41598-022-11126-7.
6
Quantum criticality between topological and band insulators in 3+1 dimensions.
Phys Rev Lett. 2011 Nov 4;107(19):196803. doi: 10.1103/PhysRevLett.107.196803. Epub 2011 Nov 2.
7
Topological spinon semimetals and gapless boundary states in three dimensions.
Phys Rev Lett. 2015 Mar 20;114(11):116803. doi: 10.1103/PhysRevLett.114.116803. Epub 2015 Mar 17.
8
Topological gapless phase in Kitaev model on square lattice.
Sci Rep. 2017 Dec 7;7(1):17179. doi: 10.1038/s41598-017-17334-w.
9
Symmetry protected topological Luttinger liquids and the phase transition between them.
Sci Bull (Beijing). 2018 Jun 30;63(12):753-758. doi: 10.1016/j.scib.2018.05.010. Epub 2018 May 17.
10
Long-range string orders and topological quantum phase transitions in the one-dimensional quantum compass model.
J Phys Condens Matter. 2015 Jan 14;27(1):015603. doi: 10.1088/0953-8984/27/1/015603. Epub 2014 Dec 5.

引用本文的文献

1
Anomalous Non-Hermitian Open-Boundary Spectrum.
Entropy (Basel). 2024 Oct 7;26(10):845. doi: 10.3390/e26100845.
2
Critical scaling of a two-orbital topological model with extended neighboring couplings.
Sci Rep. 2024 Feb 24;14(1):4504. doi: 10.1038/s41598-024-54946-5.
3
Unconventional quantum criticality in a non-Hermitian extended Kitaev chain.
Sci Rep. 2023 Jul 26;13(1):12121. doi: 10.1038/s41598-023-39234-y.
4
Mixed state behavior of Hermitian and non-Hermitian topological models with extended couplings.
Sci Rep. 2023 Apr 20;13(1):6431. doi: 10.1038/s41598-023-33449-9.
5
Topological quantum criticality in non-Hermitian extended Kitaev chain.
Sci Rep. 2022 Apr 28;12(1):6993. doi: 10.1038/s41598-022-11126-7.
6
Anisotropic scaling for 3D topological models.
Sci Rep. 2021 Nov 18;11(1):22524. doi: 10.1038/s41598-021-01888-x.

本文引用的文献

1
Unifying Interacting Nodal Semimetals: A New Route to Strong Coupling.
Phys Rev Lett. 2019 Nov 15;123(20):207601. doi: 10.1103/PhysRevLett.123.207601.
2
Topology and Edge Modes in Quantum Critical Chains.
Phys Rev Lett. 2018 Feb 2;120(5):057001. doi: 10.1103/PhysRevLett.120.057001.
3
Casimir amplitudes in topological quantum phase transitions.
Phys Rev E. 2018 Jan;97(1-1):012107. doi: 10.1103/PhysRevE.97.012107.
4
Universalities of thermodynamic signatures in topological phases.
Sci Rep. 2016 Dec 8;6:38530. doi: 10.1038/srep38530.
5
Physics of Majorana modes in interacting helical liquid.
Sci Rep. 2016 Jul 27;6:30569. doi: 10.1038/srep30569.
6
Scaling theory of [Formula: see text] topological invariants.
J Phys Condens Matter. 2016 Sep 14;28(36):365501. doi: 10.1088/0953-8984/28/36/365501. Epub 2016 Jul 12.
7
Scaling theory of topological phase transitions.
J Phys Condens Matter. 2016 Feb 10;28(5):055601. doi: 10.1088/0953-8984/28/5/055601. Epub 2016 Jan 20.
8
Type-II Weyl semimetals.
Nature. 2015 Nov 26;527(7579):495-8. doi: 10.1038/nature15768.
9
Topological Characterization of Extended Quantum Ising Models.
Phys Rev Lett. 2015 Oct 23;115(17):177204. doi: 10.1103/PhysRevLett.115.177204. Epub 2015 Oct 22.
10
First-order character and observable signatures of topological quantum phase transitions.
Phys Rev Lett. 2015 May 8;114(18):185701. doi: 10.1103/PhysRevLett.114.185701.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验