Suppr超能文献

右心室-肺血管功能的代谢谱分析揭示了肺动脉高压的循环生物标志物。

Metabolic Profiling of Right Ventricular-Pulmonary Vascular Function Reveals Circulating Biomarkers of Pulmonary Hypertension.

作者信息

Lewis Gregory D, Ngo Debby, Hemnes Anna R, Farrell Laurie, Domos Carly, Pappagianopoulos Paul P, Dhakal Bishnu P, Souza Amanda, Shi Xu, Pugh Meredith E, Beloiartsev Arkadi, Sinha Sumita, Clish Clary B, Gerszten Robert E

机构信息

Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts.

Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.

出版信息

J Am Coll Cardiol. 2016 Jan 19;67(2):174-189. doi: 10.1016/j.jacc.2015.10.072.

Abstract

BACKGROUND

Pulmonary hypertension and associated right ventricular (RV) dysfunction are important determinants of morbidity and mortality, which are optimally characterized by invasive hemodynamic measurements.

OBJECTIVES

This study sought to determine whether metabolite profiling could identify plasma signatures of right ventricular-pulmonary vascular (RV-PV) dysfunction.

METHODS

We measured plasma concentrations of 105 metabolites using targeted mass spectrometry in 71 individuals (discovery cohort) who underwent comprehensive physiological assessment with right-sided heart catheterization and radionuclide ventriculography at rest and during exercise. Our findings were validated in a second cohort undergoing invasive hemodynamic evaluations (n = 71), as well as in an independent cohort with or without known pulmonary arterial (PA) hypertension (n = 30).

RESULTS

In the discovery cohort, 21 metabolites were associated with 2 or more hemodynamic indicators of RV-PV function (i.e., resting right atrial pressure, mean PA pressure, pulmonary vascular resistance [PVR], and PVR and PA pressure-flow response [ΔPQ] during exercise). We identified novel associations of RV-PV dysfunction with circulating indoleamine 2,3-dioxygenase (IDO)-dependent tryptophan metabolites (TMs), tricarboxylic acid intermediates, and purine metabolites and confirmed previously described associations with arginine-nitric oxide metabolic pathway constituents. IDO-TM levels were inversely related to RV ejection fraction and were particularly well correlated with exercise PVR and ΔPQ. Multisite sampling demonstrated transpulmonary release of IDO-TMs. IDO-TMs also identified RV-PV dysfunction in a validation cohort with known risk factors for pulmonary hypertension and in patients with established PA hypertension.

CONCLUSIONS

Metabolic profiling identified reproducible signatures of RV-PV dysfunction, highlighting both new biomarkers and pathways for further functional characterization.

摘要

背景

肺动脉高压及相关右心室(RV)功能障碍是发病率和死亡率的重要决定因素,通过有创血流动力学测量能对其进行最佳特征描述。

目的

本研究旨在确定代谢物谱分析是否能识别右心室 - 肺血管(RV - PV)功能障碍的血浆特征。

方法

我们使用靶向质谱法测量了71名个体(发现队列)血浆中105种代谢物的浓度,这些个体在静息和运动时接受了包括右侧心导管检查和放射性核素心室造影的全面生理评估。我们的研究结果在另一组接受有创血流动力学评估的队列(n = 71)以及一组有或无已知肺动脉(PA)高压的独立队列(n = 30)中得到验证。

结果

在发现队列中,21种代谢物与RV - PV功能的2个或更多血流动力学指标相关(即静息右心房压力、平均肺动脉压力、肺血管阻力[PVR]以及运动时的PVR和肺动脉压力 - 流量反应[ΔPQ])。我们发现RV - PV功能障碍与循环中吲哚胺2,3 - 双加氧酶(IDO)依赖性色氨酸代谢物(TMs)、三羧酸中间体和嘌呤代谢物之间存在新的关联,并证实了先前描述的与精氨酸 - 一氧化氮代谢途径成分的关联。IDO - TMs水平与RV射血分数呈负相关,并且与运动时的PVR和ΔPQ特别相关。多部位采样显示IDO - TMs的经肺释放。IDO - TMs还在具有已知肺动脉高压危险因素的验证队列以及已确诊PA高压的患者中识别出RV - PV功能障碍。

结论

代谢物谱分析确定了RV - PV功能障碍的可重复特征,突出了新的生物标志物和进一步功能特征描述的途径。

相似文献

2
The Quest for Metabolic Biomarkers of Pulmonary Hypertension.
J Am Coll Cardiol. 2016 Jan 19;67(2):190-192. doi: 10.1016/j.jacc.2015.11.028.
3
Metabolic profiling of in vivo right ventricular function and exercise performance in pulmonary arterial hypertension.
Am J Physiol Lung Cell Mol Physiol. 2023 Jun 1;324(6):L836-L848. doi: 10.1152/ajplung.00003.2023. Epub 2023 Apr 18.
4
6
RV dysfunction in pulmonary hypertension is independently related to pulmonary artery stiffness.
JACC Cardiovasc Imaging. 2012 Apr;5(4):378-87. doi: 10.1016/j.jcmg.2011.11.020.
7
Trans-right ventricle and transpulmonary metabolite gradients in human pulmonary arterial hypertension.
Heart. 2020 Sep;106(17):1332-1341. doi: 10.1136/heartjnl-2019-315900. Epub 2020 Feb 20.
8
Pulmonary Vascular Distensibility and Early Pulmonary Vascular Remodeling in Pulmonary Hypertension.
Chest. 2019 Oct;156(4):724-732. doi: 10.1016/j.chest.2019.04.111. Epub 2019 May 20.
10
Pulmonary vascular collagen content, not cross-linking, contributes to right ventricular pulsatile afterload and overload in early pulmonary hypertension.
J Appl Physiol (1985). 2017 Feb 1;122(2):253-263. doi: 10.1152/japplphysiol.00325.2016. Epub 2016 Nov 17.

引用本文的文献

3
IDO-Dependent Tryptophan Metabolites and Endocan as Effective Diagnostic Biomarkers for Pregnancy with Pulmonary Hypertension.
Int J Womens Health. 2025 Jul 19;17:2205-2216. doi: 10.2147/IJWH.S527345. eCollection 2025.
5
Physiologic Phenotyping of Responses to Exercise and Activity in Heart Failure.
Circ Res. 2025 Jul 7;137(2):290-315. doi: 10.1161/CIRCRESAHA.125.325534. Epub 2025 Jul 3.
6
Dysregulated Tricarboxylic Acid Cycle Metabolism Is Associated With Right Ventricular Maladaptation in Pulmonary Vascular Disease.
J Am Heart Assoc. 2025 Jun 3;14(11):e041127. doi: 10.1161/JAHA.124.041127. Epub 2025 May 22.
7
8
Lipid Ratios for Diagnosis and Prognosis of Pulmonary Hypertension.
Am J Respir Crit Care Med. 2025 Jul;211(7):1264-1276. doi: 10.1164/rccm.202407-1345OC.
10
Exploring the Causal Relationship Between Gut Microbiota and Pulmonary Artery Hypertension: Insights From Mendelian Randomization.
J Am Heart Assoc. 2025 Mar 18;14(6):e038150. doi: 10.1161/JAHA.124.038150. Epub 2025 Mar 13.

本文引用的文献

1
2
Metabolomic heterogeneity of pulmonary arterial hypertension.
PLoS One. 2014 Feb 12;9(2):e88727. doi: 10.1371/journal.pone.0088727. eCollection 2014.
3
The metabolic basis of pulmonary arterial hypertension.
Cell Metab. 2014 Apr 1;19(4):558-73. doi: 10.1016/j.cmet.2014.01.004. Epub 2014 Feb 6.
4
Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases.
Circulation. 2013 Sep 24;128(13):1470-9. doi: 10.1161/CIRCULATIONAHA.112.000667.
5
Endothelial indoleamine 2,3-dioxygenase protects against development of pulmonary hypertension.
Am J Respir Crit Care Med. 2013 Aug 15;188(4):482-91. doi: 10.1164/rccm.201304-0700OC.
6
The potential of biomarkers in pulmonary arterial hypertension.
Am J Cardiol. 2012 Sep 15;110(6 Suppl):32S-38S. doi: 10.1016/j.amjcard.2012.06.014.
7
Pulmonary vascular distensibility predicts aerobic capacity in healthy individuals.
J Physiol. 2012 Sep 1;590(17):4279-88. doi: 10.1113/jphysiol.2012.234310. Epub 2012 Jun 25.
8
A novel molecular signature for elevated tricuspid regurgitation velocity in sickle cell disease.
Am J Respir Crit Care Med. 2012 Aug 15;186(4):359-68. doi: 10.1164/rccm.201201-0057OC. Epub 2012 Jun 7.
10
Pulmonary vascular responses to exercise: a haemodynamic observation.
Eur Respir J. 2012 Feb;39(2):231-4. doi: 10.1183/09031936.00166211.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验