Department of Pediatric Cardiology and Critical care, Hannover Medical School, Hannover, Germany.
Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
Heart. 2020 Sep;106(17):1332-1341. doi: 10.1136/heartjnl-2019-315900. Epub 2020 Feb 20.
While metabolic dysfunction occurs in several pulmonary arterial hypertension (PAH) animal models, its role in the human hypertensive right ventricle (RV) and lung is not well characterised. We investigated whether circulating metabolite concentrations differ across the hypertensive RV and/or the pulmonary circulation, and correlate with invasive haemodynamic/echocardiographic variables in patients with PAH.
Prospective EDTA blood collection during cardiac catheterisation from the superior vena cava (SVC), pulmonary artery (PA) and ascending aorta (AAO) in children with PAH (no shunt) and non-PAH controls (Con), followed by unbiased screens of 427 metabolites and 836 lipid species and fatty acids (FAs) in blood plasma (Metabolon and Lipidyzer platforms). Metabolite concentrations were correlated with echocardiographic and invasive haemodynamic variables.
Metabolomics/lipidomics analysis of differential concentrations (false discovery rate<0.15) revealed several metabolite gradients in the trans-RV (PA vs SVC) setting. Notably, dicarboxylic acids (eg, octadecanedioate: fold change (FC)_Control=0.77, FC_PAH=1.09, p value=0.044) and acylcarnitines (eg, stearoylcarnitine: FC_Control=0.74, FC_PAH=1.21, p value=0.058). Differentially regulated metabolites were also found in the transpulmonary (AAO vs PA) setting and between-group comparisons, that is, in the SVC (PAH-SVC vs Con-SVC), PA and AAO. Importantly, the differential PAH-metabolite concentrations correlated with numerous outcome-relevant variables (e.g., tricuspid annular plane systolic excursion, pulmonary vascular resistance).
In PAH, trans-RV and transpulmonary metabolite gradients exist and correlate with haemodynamic determinants of clinical outcome. The most pronounced differential trans-RV gradients are known to be involved in lipid metabolism/lipotoxicity, that is, accumulation of long chain FAs. The identified accumulation of dicarboxylic acids and acylcarnitines likely indicates impaired β-oxidation in the hypertensive RV and represents emerging biomarkers and therapeutic targets in PAH.
虽然几种肺动脉高压(PAH)动物模型存在代谢功能障碍,但它在人类高血压右心室(RV)和肺部中的作用尚未得到很好的描述。我们研究了在 PAH 患者中,循环代谢物浓度是否在高血压 RV 和/或肺循环中存在差异,并与侵入性血流动力学/超声心动图变量相关。
前瞻性采集 PAH 患儿(无分流)和非 PAH 对照(Con)右心导管术中上腔静脉(SVC)、肺动脉(PA)和升主动脉(AAO)的 EDTA 血样,随后对血液进行非靶向代谢组学和脂质组学分析(427 种代谢物和 836 种脂质和脂肪酸(FA),使用 Metabolon 和 Lipidyzer 平台)。代谢物浓度与超声心动图和侵入性血流动力学变量相关。
在 RV 跨壁(PA 与 SVC)环境中,对差异浓度(错误发现率<0.15)进行代谢组学/脂质组学分析,揭示了几种代谢物梯度。值得注意的是,二羧酸(例如,十八烷二酸:对照 FC=0.77,PAH FC=1.09,p 值=0.044)和酰基肉碱(例如,硬脂酰肉碱:对照 FC=0.74,PAH FC=1.21,p 值=0.058)。在跨肺(AAO 与 PA)环境中以及组间比较中也发现了差异调节的代谢物,即 SVC(PAH-SVC 与 Con-SVC)、PA 和 AAO。重要的是,PAH 代谢物浓度的差异与许多与结果相关的变量相关(例如,三尖瓣环平面收缩期位移、肺血管阻力)。
在 PAH 中,存在 RV 跨壁和跨肺的代谢物梯度,与临床结局的血流动力学决定因素相关。众所周知,最明显的 RV 跨壁差异梯度与脂代谢/脂毒性有关,即长链 FA 的积累。所鉴定的二羧酸和酰基肉碱的积累可能表明高血压 RV 中的β-氧化受损,是 PAH 中新兴的生物标志物和治疗靶点。