Suppr超能文献

嗜肺军团菌中碳储存多聚-3-羟基丁酸酯的生长相关代谢

Growth-related Metabolism of the Carbon Storage Poly-3-hydroxybutyrate in Legionella pneumophila.

作者信息

Gillmaier Nadine, Schunder Eva, Kutzner Erika, Tlapák Hana, Rydzewski Kerstin, Herrmann Vroni, Stämmler Maren, Lasch Peter, Eisenreich Wolfgang, Heuner Klaus

机构信息

From the Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.

Working group "Cellular Interactions of Bacterial Pathogens," ZBS 2, Robert Koch-Institute, Seestrasse 10, 13353 Berlin, Germany, and.

出版信息

J Biol Chem. 2016 Mar 18;291(12):6471-82. doi: 10.1074/jbc.M115.693481. Epub 2016 Jan 20.

Abstract

Legionella pneumophila, the causative agent of Legionnaires disease, has a biphasic life cycle with a switch from a replicative to a transmissive phenotype. During the replicative phase, the bacteria grow within host cells in Legionella-containing vacuoles. During the transmissive phenotype and the postexponential (PE) growth phase, the pathogens express virulence factors, become flagellated, and leave the Legionella-containing vacuoles. Using (13)C labeling experiments, we now show that, under in vitro conditions, serine is mainly metabolized during the replicative phase for the biosynthesis of some amino acids and for energy generation. During the PE phase, these carbon fluxes are reduced, and glucose also serves as an additional carbon substrate to feed the biosynthesis of poly-3-hydroxybuyrate (PHB), an essential carbon source for transmissive L. pneumophila. Whole-cell FTIR analysis and comparative isotopologue profiling further reveal that a putative 3-ketothiolase (Lpp1788) and a PHB polymerase (Lpp0650), but not enzymes of the crotonyl-CoA pathway (Lpp0931-0933) are involved in PHB metabolism during the PE phase. However, the data also reflect that additional bypassing reactions for PHB synthesis exist in agreement with in vivo competition assays using Acanthamoeba castellannii or human macrophage-like U937 cells as host cells. The data suggest that substrate usage and PHB metabolism are coordinated during the life cycle of the pathogen.

摘要

嗜肺军团菌是军团病的病原体,具有双相生命周期,会从复制型表型转变为传播型表型。在复制阶段,细菌在含军团菌的液泡内的宿主细胞中生长。在传播型表型和指数后期(PE)生长阶段,病原体表达毒力因子,形成鞭毛,并离开含军团菌的液泡。通过¹³C标记实验,我们现在表明,在体外条件下,丝氨酸主要在复制阶段被代谢,用于某些氨基酸的生物合成和能量产生。在PE阶段,这些碳通量减少,葡萄糖也作为额外的碳底物,为聚-3-羟基丁酸酯(PHB)的生物合成提供原料,PHB是传播型嗜肺军团菌的必需碳源。全细胞傅里叶变换红外光谱分析和比较同位素异构体谱进一步揭示,一种假定的3-酮硫解酶(Lpp1788)和一种PHB聚合酶(Lpp0650),而不是巴豆酰辅酶A途径的酶(Lpp0931 - 0933),参与了PE阶段的PHB代谢。然而,数据也反映出,与使用卡氏棘阿米巴或人巨噬细胞样U937细胞作为宿主细胞的体内竞争试验一致,存在用于PHB合成的额外旁路反应。数据表明,在病原体的生命周期中,底物利用和PHB代谢是协调的。

相似文献

1
Growth-related Metabolism of the Carbon Storage Poly-3-hydroxybutyrate in Legionella pneumophila.
J Biol Chem. 2016 Mar 18;291(12):6471-82. doi: 10.1074/jbc.M115.693481. Epub 2016 Jan 20.
2
Isotopologue profiling of Legionella pneumophila: role of serine and glucose as carbon substrates.
J Biol Chem. 2010 Jul 16;285(29):22232-43. doi: 10.1074/jbc.M110.128678. Epub 2010 May 4.
3
CsrA regulates a metabolic switch from amino acid to glycerolipid metabolism.
Open Biol. 2017 Nov;7(11). doi: 10.1098/rsob.170149.
4
Autorepressor PsrA is required for optimal Legionella pneumophila growth in Acanthamoeba castellanii protozoa.
Mol Microbiol. 2021 Aug;116(2):624-647. doi: 10.1111/mmi.14760. Epub 2021 Jun 12.
7
Amino Acid Uptake and Metabolism of Legionella pneumophila Hosted by Acanthamoeba castellanii.
J Biol Chem. 2014 Jul 25;289(30):21040-54. doi: 10.1074/jbc.M114.570085.
8
Metabolic adaption of Legionella pneumophila during intracellular growth in Acanthamoeba castellanii.
Int J Med Microbiol. 2021 May;311(4):151504. doi: 10.1016/j.ijmm.2021.151504. Epub 2021 Apr 19.
9
The intracellular metabolism of legionella by isotopologue profiling.
Methods Mol Biol. 2013;954:163-81. doi: 10.1007/978-1-62703-161-5_8.

引用本文的文献

1
LD-transpeptidase-mediated cell envelope remodeling enables developmental transitions and survival in and .
J Bacteriol. 2025 Feb 20;207(2):e0024724. doi: 10.1128/jb.00247-24. Epub 2025 Jan 23.
3
Interactions between chaperone and energy storage networks during the evolution of under heat shock.
PeerJ. 2024 Apr 30;12:e17197. doi: 10.7717/peerj.17197. eCollection 2024.
6
New Global Insights on the Regulation of the Biphasic Life Cycle and Virulence Via ClpP-Dependent Proteolysis in Legionella pneumophila.
Mol Cell Proteomics. 2022 May;21(5):100233. doi: 10.1016/j.mcpro.2022.100233. Epub 2022 Apr 12.
7
Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective.
Front Cell Infect Microbiol. 2021 Jan 14;10:615450. doi: 10.3389/fcimb.2020.615450. eCollection 2020.
8
3-Hydroxybutyrate Is Active Compound in Flax That Upregulates Genes Involved in DNA Methylation.
Int J Mol Sci. 2020 Apr 21;21(8):2887. doi: 10.3390/ijms21082887.
10
Nutrition and Bipartite Metabolism of Intracellular Pathogens.
Trends Microbiol. 2019 Jun;27(6):550-561. doi: 10.1016/j.tim.2018.12.012. Epub 2019 Jan 14.

本文引用的文献

1
The many forms of a pleomorphic bacterial pathogen-the developmental network of Legionella pneumophila.
Front Microbiol. 2014 Dec 22;5:670. doi: 10.3389/fmicb.2014.00670. eCollection 2014.
2
Amino Acid Uptake and Metabolism of Legionella pneumophila Hosted by Acanthamoeba castellanii.
J Biol Chem. 2014 Jul 25;289(30):21040-54. doi: 10.1074/jbc.M114.570085.
3
Nutrient salvaging and metabolism by the intracellular pathogen Legionella pneumophila.
Front Cell Infect Microbiol. 2014 Feb 11;4:12. doi: 10.3389/fcimb.2014.00012. eCollection 2014.
4
Legionella oakridgensis ATCC 33761 genome sequence and phenotypic characterization reveals its replication capacity in amoebae.
Int J Med Microbiol. 2013 Dec;303(8):514-28. doi: 10.1016/j.ijmm.2013.07.003. Epub 2013 Jul 18.
5
Regulation, integrase-dependent excision, and horizontal transfer of genomic islands in Legionella pneumophila.
J Bacteriol. 2013 Apr;195(7):1583-97. doi: 10.1128/JB.01739-12. Epub 2013 Jan 25.
7
Host proteasomal degradation generates amino acids essential for intracellular bacterial growth.
Science. 2011 Dec 16;334(6062):1553-7. doi: 10.1126/science.1212868. Epub 2011 Nov 17.
8
GamA is a eukaryotic-like glucoamylase responsible for glycogen- and starch-degrading activity of Legionella pneumophila.
Int J Med Microbiol. 2011 Feb;301(2):133-9. doi: 10.1016/j.ijmm.2010.08.016. Epub 2010 Oct 20.
10
Isotopologue profiling of Legionella pneumophila: role of serine and glucose as carbon substrates.
J Biol Chem. 2010 Jul 16;285(29):22232-43. doi: 10.1074/jbc.M110.128678. Epub 2010 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验