Suppr超能文献

细胞内病原体的营养与二相代谢。

Nutrition and Bipartite Metabolism of Intracellular Pathogens.

机构信息

Department of Microbiology and Immunology, College of Medicine, University of Louisville, KY, USA.

Department of Microbiology and Immunology, College of Medicine, University of Louisville, KY, USA; Center for Predictive Medicine, College of Medicine, University of Louisville, KY, USA.

出版信息

Trends Microbiol. 2019 Jun;27(6):550-561. doi: 10.1016/j.tim.2018.12.012. Epub 2019 Jan 14.

Abstract

The host is a nutrient-rich niche for microbial pathogens, but one that comes with obstacles and challenges. Many intracellular pathogens like Legionella pneumophila, Coxiella burnetii, Listeria monocytogenes, and Chlamydia trachomatis have developed bipartite metabolism within their hosts. This style of metabolic regulation enables pathogen sensing of specific nutrients to engage them into catabolic and anabolic processes, and contributes to temporal and spatial pathogen phenotypic modulation. Not only have intracellular pathogens adapted their metabolism to the host, they have also acquired idiosyncratic strategies to exploit host nutritional supplies and intercept metabolites. Francisella tularensis and Anaplasma phagocytophilum alter host autophagy, Shigella flexneri intercepts all host pyruvate, while L. pneumophila induces host protein degradation and blocks protein translation. Strategies of pathogen manipulation of host nutrients could serve as therapeutic targets.

摘要

宿主是微生物病原体的营养丰富小生境,但也伴随着障碍和挑战。许多细胞内病原体,如嗜肺军团菌、贝氏柯克斯体、李斯特菌和沙眼衣原体,在宿主中已经发展出二分代谢。这种代谢调节方式使病原体能够感应特定的营养物质,从而使它们参与分解代谢和合成代谢过程,并有助于病原体表型的时间和空间调节。细胞内病原体不仅使它们的代谢适应了宿主,还获得了独特的策略来利用宿主的营养供应和拦截代谢物。土拉弗朗西斯菌和嗜吞噬细胞无形体改变宿主自噬,福氏志贺菌拦截所有宿主丙酮酸,而嗜肺军团菌则诱导宿主蛋白降解并阻断蛋白翻译。病原体对宿主营养物质的操纵策略可以作为治疗靶点。

相似文献

1
Nutrition and Bipartite Metabolism of Intracellular Pathogens.
Trends Microbiol. 2019 Jun;27(6):550-561. doi: 10.1016/j.tim.2018.12.012. Epub 2019 Jan 14.
2
Microbial quest for food in vivo: 'nutritional virulence' as an emerging paradigm.
Cell Microbiol. 2013 Jun;15(6):882-90. doi: 10.1111/cmi.12138. Epub 2013 Apr 3.
3
Modulation of host cell metabolism by T4SS-encoding intracellular pathogens.
Curr Opin Microbiol. 2019 Feb;47:59-65. doi: 10.1016/j.mib.2018.11.010. Epub 2019 Jan 11.
4
Autophagy and Its Interaction With Intracellular Bacterial Pathogens.
Front Immunol. 2018 May 23;9:935. doi: 10.3389/fimmu.2018.00935. eCollection 2018.
5
Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia.
Semin Cell Dev Biol. 2016 Dec;60:155-167. doi: 10.1016/j.semcdb.2016.07.019. Epub 2016 Jul 19.
7
Manipulation of Host Cell Organelles by Intracellular Pathogens.
Int J Mol Sci. 2021 Jun 17;22(12):6484. doi: 10.3390/ijms22126484.
8
in the Face of Host-Imposed Nutrient Limitation.
Microbiol Spectr. 2017 Jun;5(3). doi: 10.1128/microbiolspec.TBTB2-0030-2016.
9
Keeping the host alive - lessons from obligate intracellular bacterial pathogens.
Pathog Dis. 2021 Dec 1;79(9). doi: 10.1093/femspd/ftab052.
10
Nutritional virulence of Francisella tularensis.
Front Cell Infect Microbiol. 2013 Dec 31;3:112. doi: 10.3389/fcimb.2013.00112. eCollection 2013.

引用本文的文献

3
A "plus one" strategy impacts replication of felid alphaherpesvirus 1, and and the metabolism of coinfected feline cells.
mSystems. 2024 Oct 22;9(10):e0085224. doi: 10.1128/msystems.00852-24. Epub 2024 Sep 24.
5
Lysosomal trafficking regulator restricts intracellular growth of by inhibiting the expansion of -containing vacuole and upregulating expression.
Front Cell Infect Microbiol. 2024 Jan 11;13:1336600. doi: 10.3389/fcimb.2023.1336600. eCollection 2023.
6
Untangling Cellular Host-Pathogen Encounters at Infection Bottlenecks.
Infect Immun. 2023 Apr 18;91(4):e0043822. doi: 10.1128/iai.00438-22. Epub 2023 Mar 20.
7
The Tick-Borne Pathogens: An Overview of China's Situation.
Acta Parasitol. 2023 Mar;68(1):1-20. doi: 10.1007/s11686-023-00658-1. Epub 2023 Jan 16.
8
Identification of gene as an immunosuppressive factor in infection.
Front Cell Infect Microbiol. 2022 Oct 26;12:1027424. doi: 10.3389/fcimb.2022.1027424. eCollection 2022.
9
Survival of 11168H in Provides Mechanistic Insight into Host Pathogen Interactions.
Microorganisms. 2022 Sep 23;10(10):1894. doi: 10.3390/microorganisms10101894.
10
Francisella tularensis Exploits AMPK Activation to Harvest Host-Derived Nutrients Liberated from Host Lipolysis.
Infect Immun. 2022 Aug 18;90(8):e0015522. doi: 10.1128/iai.00155-22. Epub 2022 Aug 2.

本文引用的文献

1
Evasion of phagotrophic predation by protist hosts and innate immunity of metazoan hosts by Legionella pneumophila.
Cell Microbiol. 2019 Jan;21(1):e12971. doi: 10.1111/cmi.12971. Epub 2018 Nov 15.
2
Evolution of the Arsenal of Legionella pneumophila Effectors To Modulate Protist Hosts.
mBio. 2018 Oct 9;9(5):e01313-18. doi: 10.1128/mBio.01313-18.
3
Attenuation of Virulence by L. Essential Oil.
Front Cell Infect Microbiol. 2018 Aug 22;8:293. doi: 10.3389/fcimb.2018.00293. eCollection 2018.
4
Phylogenetic Lineages of in Animals.
Front Cell Infect Microbiol. 2018 Jul 31;8:258. doi: 10.3389/fcimb.2018.00258. eCollection 2018.
5
Reveals Niche Differences Between Highly Pathogenic and Closely Related Strains of spp.
Front Cell Infect Microbiol. 2018 Jun 5;8:188. doi: 10.3389/fcimb.2018.00188. eCollection 2018.
6
Comparative Transcriptome Profiling of Virulent and Attenuated Strains Highlighted Strong Regulation of - and Metabolism Related Genes.
Front Cell Infect Microbiol. 2018 May 15;8:153. doi: 10.3389/fcimb.2018.00153. eCollection 2018.
7
To Be Cytosolic or Vacuolar: The Double Life of .
Front Cell Infect Microbiol. 2018 May 15;8:136. doi: 10.3389/fcimb.2018.00136. eCollection 2018.
8
Mammalian Solute Carrier (SLC)-like transporters of Legionella pneumophila.
Sci Rep. 2018 May 29;8(1):8352. doi: 10.1038/s41598-018-26782-x.
9
The Type VI Secretion System.
Front Cell Infect Microbiol. 2018 Apr 23;8:121. doi: 10.3389/fcimb.2018.00121. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验