Multivariate Behav Res. 2006 Dec 1;41(4):445-72. doi: 10.1207/s15327906mbr4104_2.
We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane. The model yields closed form expressions for the cell probabilities. We estimate and test the goodness of fit of the model using only information contained in the univariate and bivariate moments of the data. Also, we pit the new model against the multidimensional normal ogive model estimated using NOHARM in four applications involving (a) attitudes toward censorship, (b) satisfaction with life, (c) attitudes of morality and equality, and (d) political efficacy. The normal PDF model is not invariant to simple operations such as reverse scoring. Thus, when there is no natural category to be modeled, as in many personality applications, it should be fit separately with and without reverse scoring for comparisons.
我们介绍了一种基于邻近反应机制的二元数据多维项目反应理论(IRT)模型。在该模型下,对于项目反应函数(IRF)的模式,应答者以概率 1 认可该项目。IRF 的模式是理想点,或者在多维情况下,是理想的超平面。该模型为单元概率提供了封闭形式的表达式。我们仅使用数据的单变量和双变量矩中的信息来估计和测试模型的拟合优度。此外,我们在四个应用中比较了新模型和使用 NOHARM 估计的多维正态累积模型,这些应用包括:(a)对审查的态度,(b)对生活的满意度,(c)道德和平等态度,以及(d)政治效能感。正态 PDF 模型对于简单的操作(例如反向评分)没有不变性。因此,当没有自然类别需要建模时,就像在许多人格应用中一样,它应该分别在有和没有反向评分的情况下进行拟合,以便进行比较。