Wang Wen-Chung, Wu Shiu-Lien
The Hong Kong Institute of Education, Tai Po, Hong Kong.
National Chung Cheng University, Chiayi, Taiwan.
Appl Psychol Meas. 2016 Jan;40(1):56-72. doi: 10.1177/0146621615602855. Epub 2015 Sep 1.
Most unfolding item response models for graded-response items are unidimensional. When there are multiple tests of graded-response items, unidimensional unfolding models become inefficient. To resolve this problem, the authors developed the confirmatory multidimensional generalized graded unfolding model, which is a multidimensional extension of the generalized graded unfolding model, and conducted a series of simulations to evaluate its parameter recovery. The simulation study on between-item multidimensionality demonstrated that the parameters of the new model can be recovered fairly well with the WinBUGS program. The Tattoo Attitude Questionnaire, with three subscales, was analyzed to demonstrate the advantages of the new model over the unidimensional model in obtaining a better model-data fit, a higher test reliability, and a stronger correlation between latent traits. Discussion on potential applications and suggestion for future studies are provided.
大多数用于等级反应项目的展开式项目反应模型都是单维的。当存在多个等级反应项目的测试时,单维展开模型就会变得效率低下。为了解决这个问题,作者开发了验证性多维广义等级展开模型,它是广义等级展开模型的多维扩展,并进行了一系列模拟以评估其参数恢复情况。关于项目间多维性的模拟研究表明,使用WinBUGS程序可以较好地恢复新模型的参数。对具有三个子量表的纹身态度问卷进行了分析,以证明新模型在获得更好的模型-数据拟合、更高的测试信度以及潜在特质之间更强的相关性方面优于单维模型。文中还提供了关于潜在应用的讨论以及对未来研究的建议。