Suppr超能文献

用于等级反应项目的验证性多维IRT展开模型

Confirmatory Multidimensional IRT Unfolding Models for Graded-Response Items.

作者信息

Wang Wen-Chung, Wu Shiu-Lien

机构信息

The Hong Kong Institute of Education, Tai Po, Hong Kong.

National Chung Cheng University, Chiayi, Taiwan.

出版信息

Appl Psychol Meas. 2016 Jan;40(1):56-72. doi: 10.1177/0146621615602855. Epub 2015 Sep 1.

Abstract

Most unfolding item response models for graded-response items are unidimensional. When there are multiple tests of graded-response items, unidimensional unfolding models become inefficient. To resolve this problem, the authors developed the confirmatory multidimensional generalized graded unfolding model, which is a multidimensional extension of the generalized graded unfolding model, and conducted a series of simulations to evaluate its parameter recovery. The simulation study on between-item multidimensionality demonstrated that the parameters of the new model can be recovered fairly well with the WinBUGS program. The Tattoo Attitude Questionnaire, with three subscales, was analyzed to demonstrate the advantages of the new model over the unidimensional model in obtaining a better model-data fit, a higher test reliability, and a stronger correlation between latent traits. Discussion on potential applications and suggestion for future studies are provided.

摘要

大多数用于等级反应项目的展开式项目反应模型都是单维的。当存在多个等级反应项目的测试时,单维展开模型就会变得效率低下。为了解决这个问题,作者开发了验证性多维广义等级展开模型,它是广义等级展开模型的多维扩展,并进行了一系列模拟以评估其参数恢复情况。关于项目间多维性的模拟研究表明,使用WinBUGS程序可以较好地恢复新模型的参数。对具有三个子量表的纹身态度问卷进行了分析,以证明新模型在获得更好的模型-数据拟合、更高的测试信度以及潜在特质之间更强的相关性方面优于单维模型。文中还提供了关于潜在应用的讨论以及对未来研究的建议。

相似文献

1
Confirmatory Multidimensional IRT Unfolding Models for Graded-Response Items.
Appl Psychol Meas. 2016 Jan;40(1):56-72. doi: 10.1177/0146621615602855. Epub 2015 Sep 1.
3
Unfolding IRT Models for Likert-Type Items With a Don't Know Option.
Appl Psychol Meas. 2016 Oct;40(7):517-533. doi: 10.1177/0146621616664047. Epub 2016 Aug 20.
4
: An R Package for Bayesian Estimation of the Multidimensional Generalized Graded Unfolding Model With Covariates.
Appl Psychol Meas. 2021 Oct;45(7-8):553-555. doi: 10.1177/01466216211040488. Epub 2021 Sep 15.
5
A General Unfolding IRT Model for Multiple Response Styles.
Appl Psychol Meas. 2019 May;43(3):195-210. doi: 10.1177/0146621618762743. Epub 2018 Apr 16.
6
Parameter Recovery in Multidimensional Item Response Theory Models Under Complexity and Nonnormality.
Appl Psychol Meas. 2017 Oct;41(7):530-544. doi: 10.1177/0146621617707507. Epub 2017 May 11.
7
Evaluation of the Linear Composite Conjecture for Unidimensional IRT Scale for Multidimensional Responses.
Appl Psychol Meas. 2022 Jul;46(5):347-360. doi: 10.1177/01466216221084218. Epub 2022 Jun 15.
8
Item Response Theory Models for Carry-Over Effect Across Different Scales.
Appl Psychol Meas. 2015 Jul;39(5):406-425. doi: 10.1177/0146621615572250. Epub 2015 Mar 2.
9
Investigating the Impact of Item Parameter Drift for Item Response Theory Models with Mixture Distributions.
Front Psychol. 2016 Feb 24;7:255. doi: 10.3389/fpsyg.2016.00255. eCollection 2016.
10
Mixture Random-Effect IRT Models for Controlling Extreme Response Style on Rating Scales.
Front Psychol. 2016 Nov 2;7:1706. doi: 10.3389/fpsyg.2016.01706. eCollection 2016.

引用本文的文献

4
A General Unfolding IRT Model for Multiple Response Styles.
Appl Psychol Meas. 2019 May;43(3):195-210. doi: 10.1177/0146621618762743. Epub 2018 Apr 16.
5
Fitting item response unfolding models to Likert-scale data using mirt in R.
PLoS One. 2018 May 3;13(5):e0196292. doi: 10.1371/journal.pone.0196292. eCollection 2018.

本文引用的文献

1
A Multidimensional Ideal Point Item Response Theory Model for Binary Data.
Multivariate Behav Res. 2006 Dec 1;41(4):445-72. doi: 10.1207/s15327906mbr4104_2.
2
The Multigroup Multilevel Categorical Latent Growth Curve Models.
Multivariate Behav Res. 2010 Mar 31;45(2):359-92. doi: 10.1080/00273171003680336.
6
Improving measurement precision of test batteries using multidimensional item response models.
Psychol Methods. 2004 Mar;9(1):116-36. doi: 10.1037/1082-989X.9.1.116.
7
A Class of Probabilistic Unfolding Models for Polytomous Responses.
J Math Psychol. 2001 Apr;45(2):224-248. doi: 10.1006/jmps.2000.1310.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验