Coskun Devrim, Britto Dev T, Kochian Leon V, Kronzucker Herbert J
Department of Biological Sciences & Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto, Ontario M1C 1A4, Canada.
Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York 14853, USA.
Plant Sci. 2016 Feb;243:96-104. doi: 10.1016/j.plantsci.2015.12.003. Epub 2015 Dec 11.
Potassium (K(+)) acquisition in roots is generally described by a two-mechanism model, consisting of a saturable, high-affinity transport system (HATS) operating via H(+)/K(+) symport at low (<1mM) external [K(+)] ([K(+)]ext), and a linear, low-affinity system (LATS) operating via ion channels at high (>1mM) [K(+)]ext. Radiotracer measurements in the LATS range indicate that the linear rise in influx continues well beyond nutritionally relevant concentrations (>10mM), suggesting K(+) transport may be pushed to extraordinary, and seemingly limitless, capacity. Here, we assess this rise, asking whether LATS measurements faithfully report transmembrane fluxes. Using (42)K(+)-isotope and electrophysiological methods in barley, we show that this flux is part of a K(+)-transport cycle through the apoplast, and masks a genuine plasma-membrane influx that displays Michaelis-Menten kinetics. Rapid apoplastic cycling of K(+) is corroborated by an absence of transmembrane (42)K(+) efflux above 1mM, and by the efflux kinetics of PTS, an apoplastic tracer. A linear apoplastic influx, masking a saturating transmembrane influx, was also found in Arabidopsis mutants lacking the K(+) transporters AtHAK5 and AtAKT1. Our work significantly revises the model of K(+) transport by demonstrating a surprisingly modest upper limit for plasma-membrane influx, and offers insight into sodium transport under salt stress.
根系对钾离子(K(+))的吸收通常由一种双机制模型来描述,该模型包括一个可饱和的高亲和转运系统(HATS),在外部低钾浓度(<1mM)[K(+)]([K(+)]ext)时通过H(+)/K(+)同向转运发挥作用;以及一个线性的低亲和系统(LATS),在高钾浓度(>1mM)[K(+)]ext时通过离子通道发挥作用。在LATS范围内的放射性示踪测量表明,流入量的线性增加在营养相关浓度(>10mM)以上仍持续良好,这表明K(+)转运可能被推至非凡且看似无限的容量。在此,我们评估这种增加,探究LATS测量是否如实反映跨膜通量。通过在大麦中使用(42)K(+)同位素和电生理方法,我们表明这种通量是通过质外体的K(+)转运循环的一部分,并掩盖了显示米氏动力学的真正质膜流入。1mM以上不存在跨膜(42)K(+)流出以及质外体示踪剂PTS的流出动力学证实了K(+)在质外体中的快速循环。在缺乏K(+)转运蛋白AtHAK5和AtAKT1的拟南芥突变体中也发现了掩盖饱和跨膜流入的线性质外体流入。我们的工作通过证明质膜流入出人意料的适度上限,显著修正了K(+)转运模型,并为盐胁迫下的钠转运提供了见解。