Suppr超能文献

光激活腺苷酸环化酶(PAC)揭示了cAMP依赖性轴突形态发生的新机制。

Photoactivated adenylyl cyclase (PAC) reveals novel mechanisms underlying cAMP-dependent axonal morphogenesis.

作者信息

Zhou Zhiwen, Tanaka Kenji F, Matsunaga Shigeru, Iseki Mineo, Watanabe Masakatsu, Matsuki Norio, Ikegaya Yuji, Koyama Ryuta

机构信息

Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.

Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo, Japan.

出版信息

Sci Rep. 2016 Jan 22;5:19679. doi: 10.1038/srep19679.

Abstract

Spatiotemporal regulation of axonal branching and elongation is essential in the development of refined neural circuits. cAMP is a key regulator of axonal growth; however, whether and how intracellular cAMP regulates axonal branching and elongation remain unclear, mainly because tools to spatiotemporally manipulate intracellular cAMP levels have been lacking. To overcome this issue, we utilized photoactivated adenylyl cyclase (PAC), which produces cAMP in response to blue-light exposure. In primary cultures of dentate granule cells transfected with PAC, short-term elevation of intracellular cAMP levels induced axonal branching but not elongation, whereas long-term cAMP elevation induced both axonal branching and elongation. The temporal dynamics of intracellular cAMP levels regulated axonal branching and elongation through the activation of protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), respectively. Thus, using PAC, our study for the first time reveals that temporal cAMP dynamics could regulate axonal branching and elongation via different signaling pathways.

摘要

轴突分支和延伸的时空调节在精细神经回路的发育中至关重要。环磷酸腺苷(cAMP)是轴突生长的关键调节因子;然而,细胞内cAMP是否以及如何调节轴突分支和延伸仍不清楚,主要是因为一直缺乏在时空上操纵细胞内cAMP水平的工具。为了克服这个问题,我们利用了光激活腺苷酸环化酶(PAC),它在蓝光照射下产生cAMP。在转染了PAC的齿状颗粒细胞原代培养物中,细胞内cAMP水平的短期升高诱导了轴突分支,但没有诱导延伸,而长期的cAMP升高则诱导了轴突分支和延伸。细胞内cAMP水平的时间动态分别通过激活蛋白激酶A(PKA)和cAMP直接激活的交换蛋白(Epac)来调节轴突分支和延伸。因此,通过使用PAC,我们的研究首次揭示了cAMP的时间动态可以通过不同的信号通路调节轴突分支和延伸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/315b/4726437/c2f9be4a8942/srep19679-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验