Suppr超能文献

光遗传学技术在 G 蛋白偶联受体信号转导调控及检测中的应用

Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling.

机构信息

Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA.

Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.

出版信息

Methods Mol Biol. 2020;2173:21-51. doi: 10.1007/978-1-0716-0755-8_2.

Abstract

G protein-coupled receptors (GPCRs) form the largest class of membrane receptors in the mammalian genome with nearly 800 human genes encoding for unique subtypes. Accordingly, GPCR signaling is implicated in nearly all physiological processes. However, GPCRs have been difficult to study due in part to the complexity of their function which can lead to a plethora of converging or diverging downstream effects over different time and length scales. Classic techniques such as pharmacological control, genetic knockout and biochemical assays often lack the precision required to probe the functions of specific GPCR subtypes. Here we describe the rapidly growing set of optogenetic tools, ranging from methods for optical control of the receptor itself to optical sensing and manipulation of downstream effectors. These tools permit the quantitative measurements of GPCRs and their downstream signaling with high specificity and spatiotemporal precision.

摘要

G 蛋白偶联受体 (GPCRs) 是哺乳动物基因组中最大的膜受体家族,近 800 个人类基因编码独特的亚型。相应地,GPCR 信号转导涉及几乎所有的生理过程。然而,由于其功能的复杂性,GPCR 一直难以研究,这可能导致在不同的时间和长度尺度上产生大量趋同或发散的下游效应。经典技术,如药理学控制、基因敲除和生化测定,往往缺乏探测特定 GPCR 亚型功能所需的精度。在这里,我们描述了一组快速发展的光遗传学工具,从光控受体本身的方法到光感应和下游效应器的操纵。这些工具允许以高特异性和时空精度对 GPCR 及其下游信号进行定量测量。

相似文献

1
Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling.
Methods Mol Biol. 2020;2173:21-51. doi: 10.1007/978-1-0716-0755-8_2.
2
Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits.
Curr Opin Pharmacol. 2017 Feb;32:56-70. doi: 10.1016/j.coph.2016.11.001. Epub 2016 Nov 19.
3
Optical Regulation of Class C GPCRs by Photoswitchable Orthogonal Remotely Tethered Ligands.
Methods Mol Biol. 2019;1947:103-136. doi: 10.1007/978-1-4939-9121-1_6.
4
Live Cell Imaging and Optogenetics-Based Assays for GPCR Activity.
Methods Mol Biol. 2021;2268:207-221. doi: 10.1007/978-1-0716-1221-7_14.
5
Quantitative live-cell imaging of GPCR downstream signaling dynamics.
Biochem J. 2022 Apr 29;479(8):883-900. doi: 10.1042/BCJ20220021.
9
Subcellular optogenetics - controlling signaling and single-cell behavior.
J Cell Sci. 2015 Jan 1;128(1):15-25. doi: 10.1242/jcs.154435. Epub 2014 Nov 28.
10
Ins and outs of GPCR signaling in primary cilia.
EMBO Rep. 2015 Sep;16(9):1099-113. doi: 10.15252/embr.201540530. Epub 2015 Aug 21.

引用本文的文献

1
Exploring the memory: existing activity-dependent tools to tag and manipulate engram cells.
Front Cell Neurosci. 2024 Jan 8;17:1279032. doi: 10.3389/fncel.2023.1279032. eCollection 2023.
3
Optical Approaches for Investigating Neuromodulation and G Protein-Coupled Receptor Signaling.
Pharmacol Rev. 2023 Nov;75(6):1119-1139. doi: 10.1124/pharmrev.122.000584. Epub 2023 Jul 10.
4
Optogenetic Approaches for the Spatiotemporal Control of Signal Transduction Pathways.
Int J Mol Sci. 2021 May 18;22(10):5300. doi: 10.3390/ijms22105300.
5
A fine-tuned azobenzene for enhanced photopharmacology in vivo.
Cell Chem Biol. 2021 Nov 18;28(11):1648-1663.e16. doi: 10.1016/j.chembiol.2021.02.020. Epub 2021 Mar 17.
6
Biosensors Monitor Ligand-Selective Effects at Kappa Opioid Receptors.
Handb Exp Pharmacol. 2022;271:65-82. doi: 10.1007/164_2020_427.

本文引用的文献

1
A genetically encoded fluorescent sensor for in vivo imaging of GABA.
Nat Methods. 2019 Aug;16(8):763-770. doi: 10.1038/s41592-019-0471-2. Epub 2019 Jul 15.
2
Genetically Targeted Optical Control of an Endogenous G Protein-Coupled Receptor.
J Am Chem Soc. 2019 Jul 24;141(29):11522-11530. doi: 10.1021/jacs.9b02895. Epub 2019 Jul 10.
3
Optical control of neuronal ion channels and receptors.
Nat Rev Neurosci. 2019 Sep;20(9):514-532. doi: 10.1038/s41583-019-0197-2.
4
Plug-and-Play Protein Modification Using Homology-Independent Universal Genome Engineering.
Neuron. 2019 Aug 21;103(4):583-597.e8. doi: 10.1016/j.neuron.2019.05.047. Epub 2019 Jul 1.
5
Light-activated chimeric GPCRs: limitations and opportunities.
Curr Opin Struct Biol. 2019 Aug;57:196-203. doi: 10.1016/j.sbi.2019.05.006. Epub 2019 Jun 14.
6
FRET-based sensor for CaMKII activity (FRESCA): A useful tool for assessing CaMKII activity in response to Ca oscillations in live cells.
J Biol Chem. 2019 Aug 2;294(31):11876-11891. doi: 10.1074/jbc.RA119.009235. Epub 2019 Jun 14.
8
Dissociable dopamine dynamics for learning and motivation.
Nature. 2019 Jun;570(7759):65-70. doi: 10.1038/s41586-019-1235-y. Epub 2019 May 22.
9
Structural Insights into the Process of GPCR-G Protein Complex Formation.
Cell. 2019 May 16;177(5):1243-1251.e12. doi: 10.1016/j.cell.2019.04.021. Epub 2019 May 9.
10
A Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection of Norepinephrine.
Neuron. 2019 May 22;102(4):745-761.e8. doi: 10.1016/j.neuron.2019.02.037. Epub 2019 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验