Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA.
Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
Methods Mol Biol. 2020;2173:21-51. doi: 10.1007/978-1-0716-0755-8_2.
G protein-coupled receptors (GPCRs) form the largest class of membrane receptors in the mammalian genome with nearly 800 human genes encoding for unique subtypes. Accordingly, GPCR signaling is implicated in nearly all physiological processes. However, GPCRs have been difficult to study due in part to the complexity of their function which can lead to a plethora of converging or diverging downstream effects over different time and length scales. Classic techniques such as pharmacological control, genetic knockout and biochemical assays often lack the precision required to probe the functions of specific GPCR subtypes. Here we describe the rapidly growing set of optogenetic tools, ranging from methods for optical control of the receptor itself to optical sensing and manipulation of downstream effectors. These tools permit the quantitative measurements of GPCRs and their downstream signaling with high specificity and spatiotemporal precision.
G 蛋白偶联受体 (GPCRs) 是哺乳动物基因组中最大的膜受体家族,近 800 个人类基因编码独特的亚型。相应地,GPCR 信号转导涉及几乎所有的生理过程。然而,由于其功能的复杂性,GPCR 一直难以研究,这可能导致在不同的时间和长度尺度上产生大量趋同或发散的下游效应。经典技术,如药理学控制、基因敲除和生化测定,往往缺乏探测特定 GPCR 亚型功能所需的精度。在这里,我们描述了一组快速发展的光遗传学工具,从光控受体本身的方法到光感应和下游效应器的操纵。这些工具允许以高特异性和时空精度对 GPCR 及其下游信号进行定量测量。