Suppr超能文献

虚拟国际卒中试验档案-急性协作组中用于预测缺血性卒中后死亡率的卒中严重程度与合并症指数

Stroke Severity and Comorbidity Index for Prediction of Mortality after Ischemic Stroke from the Virtual International Stroke Trials Archive-Acute Collaboration.

作者信息

Phan Thanh G, Clissold Benjamin, Ly John, Ma Henry, Moran Chris, Srikanth Velandai

机构信息

Stroke Unit, Monash Health and Stroke and Aging Research Group, Monash University, Melbourne, Australia.

Stroke Unit, Monash Health and Stroke and Aging Research Group, Monash University, Melbourne, Australia.

出版信息

J Stroke Cerebrovasc Dis. 2016 Apr;25(4):835-42. doi: 10.1016/j.jstrokecerebrovasdis.2015.12.016. Epub 2016 Jan 18.

Abstract

BACKGROUND

There is increasing interest in the use of administrative data (incorporating comorbidity index) and stroke severity score to predict ischemic stroke mortality. The aim of this study was to determine the optimal timing for the collection of stroke severity data and the minimum clinical dataset to be included in models of stroke mortality. To address these issues, we chose the Virtual International Stroke Trials Archive (VISTA), which contains National Institutes of Health Stroke Scale (NIHSS) on admission and at 24 hours, as well as outcome at 90 days.

METHODS

VISTA was searched for patients who had baseline and 24-hour NIHSS. Improvement in regression models was performed by the net reclassification improvement (NRI) method.

RESULTS

The clinical data among 5206 patients were mean age, 69 ± 13; comorbidity index, 3.3 ± .9; median NIHSS at baseline, 12 (interquartile range [IQR] 8-17); NIHSS at 24 hours, 9 (IQR 8-15); and death at 90 days in 15%. The baseline model consists of age, gender, and comorbidity index. Adding the baseline NIHSS to model 1 improved the NRI by 0.671 (95% confidence interval [CI] 0.595-0.747) [or 67.1% correct reclassification between model 1 and model 2]. Adding the 24 hour NIHSS term to model 1 (model 3) improved the NRI by 0.929 (95% CI 0.857-1.000) for model 3 versus model 1. Adding the variable thrombolysis to model 3 (model 4) improve NRI by 0.1 (95% CI 0.023-0.178) [model 4 versus model 3].

CONCLUSION

The optimal model for the prediction of mortality was achieved by adding the 24-hour NIHSS and thrombolysis to the baseline model.

摘要

背景

利用行政数据(合并共病指数)和卒中严重程度评分来预测缺血性卒中死亡率的关注度日益增加。本研究的目的是确定收集卒中严重程度数据的最佳时机以及纳入卒中死亡率模型的最小临床数据集。为解决这些问题,我们选择了虚拟国际卒中试验档案库(VISTA),其包含入院时和24小时时的美国国立卫生研究院卒中量表(NIHSS)以及90天的结局。

方法

在VISTA中搜索有基线和24小时NIHSS的患者。通过净重新分类改善(NRI)方法对回归模型进行改进。

结果

5206例患者的临床数据为平均年龄69±13岁;共病指数3.3±0.9;基线时NIHSS中位数为12(四分位间距[IQR]8 - 17);24小时时NIHSS为9(IQR 8 - 15);90天时死亡率为15%。基线模型包括年龄、性别和共病指数。将基线NIHSS添加到模型1使NRI提高了0.671(95%置信区间[CI]0.595 - 0.747)[即模型1和模型2之间正确重新分类率为67.1%]。将24小时NIHSS项添加到模型1(模型3)相对于模型1使NRI提高了0.929(95%CI 0.857 - 1.000)。将变量溶栓添加到模型3(模型4)使NRI提高了0.1(95%CI 0.023 - 0.178)[模型4相对于模型3]。

结论

通过将24小时NIHSS和溶栓添加到基线模型中可实现预测死亡率的最佳模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验