Suppr超能文献

发育中的人类中枢神经系统的细胞和分子图谱

The Cellular and Molecular Landscapes of the Developing Human Central Nervous System.

作者信息

Silbereis John C, Pochareddy Sirisha, Zhu Ying, Li Mingfeng, Sestan Nenad

机构信息

Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.

Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics and Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA; Section of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.

出版信息

Neuron. 2016 Jan 20;89(2):248-68. doi: 10.1016/j.neuron.2015.12.008.

Abstract

The human CNS follows a pattern of development typical of all mammals, but certain neurodevelopmental features are highly derived. Building the human CNS requires the precise orchestration and coordination of myriad molecular and cellular processes across a staggering array of cell types and over a long period of time. Dysregulation of these processes affects the structure and function of the CNS and can lead to neurological or psychiatric disorders. Recent technological advances and increased focus on human neurodevelopment have enabled a more comprehensive characterization of the human CNS and its development in both health and disease. The aim of this review is to highlight recent advancements in our understanding of the molecular and cellular landscapes of the developing human CNS, with focus on the cerebral neocortex, and the insights these findings provide into human neural evolution, function, and dysfunction.

摘要

人类中枢神经系统(CNS)遵循所有哺乳动物典型的发育模式,但某些神经发育特征具有高度特殊性。构建人类中枢神经系统需要在大量不同类型细胞中,经过很长一段时间,精确编排和协调无数分子和细胞过程。这些过程的失调会影响中枢神经系统的结构和功能,并可能导致神经或精神疾病。最近的技术进步以及对人类神经发育的更多关注,使得对人类中枢神经系统及其在健康和疾病状态下的发育有了更全面的描述。本综述的目的是突出我们对发育中的人类中枢神经系统分子和细胞格局理解的最新进展,重点是大脑新皮层,以及这些发现为人类神经进化、功能和功能障碍提供的见解。

相似文献

1
The Cellular and Molecular Landscapes of the Developing Human Central Nervous System.
Neuron. 2016 Jan 20;89(2):248-68. doi: 10.1016/j.neuron.2015.12.008.
2
Cell fate control in the developing central nervous system.
Exp Cell Res. 2014 Feb 1;321(1):77-83. doi: 10.1016/j.yexcr.2013.10.003. Epub 2013 Oct 16.
3
Autophagy in mammalian neurodevelopment and implications for childhood neurological disorders.
Neurosci Lett. 2019 Apr 1;697:29-33. doi: 10.1016/j.neulet.2018.04.017. Epub 2018 Apr 14.
4
Long noncoding RNAs in development and disease of the central nervous system.
Trends Genet. 2013 Aug;29(8):461-8. doi: 10.1016/j.tig.2013.03.002. Epub 2013 Apr 4.
6
Human brain organogenesis: Toward a cellular understanding of development and disease.
Cell. 2022 Jan 6;185(1):42-61. doi: 10.1016/j.cell.2021.10.003. Epub 2021 Nov 12.
7
In vivo models to study neurogenesis and associated neurodevelopmental disorders-Microcephaly and autism spectrum disorder.
WIREs Mech Dis. 2023 Jul-Aug;15(4):e1603. doi: 10.1002/wsbm.1603. Epub 2023 Feb 8.
9
Regulation of proliferation during central nervous system development.
Semin Cell Dev Biol. 2005 Jun;16(3):407-21. doi: 10.1016/j.semcdb.2005.02.012.
10
Cerebral cortex development: From progenitors patterning to neocortical size during evolution.
Dev Growth Differ. 2009 Apr;51(3):325-42. doi: 10.1111/j.1440-169X.2009.01095.x. Epub 2009 Feb 27.

引用本文的文献

1
The dual nature of neuroinflammation in networked brain.
Front Immunol. 2025 Aug 20;16:1659947. doi: 10.3389/fimmu.2025.1659947. eCollection 2025.
3
DNA methylation in infants with neurodevelopmental disorders.
Front Psychol. 2025 Jul 31;16:1593609. doi: 10.3389/fpsyg.2025.1593609. eCollection 2025.
4
Gut microbiota maturation and early behavioral and cognitive development.
Sci Rep. 2025 Aug 7;15(1):28944. doi: 10.1038/s41598-025-13530-1.
5
Simulation-based inference of developmental EEG maturation with the spectral graph model.
Commun Phys. 2024;7(1):255. doi: 10.1038/s42005-024-01748-w. Epub 2024 Jul 31.
7
Sex Differences in Children's Motivation and Action Patterns for Climbing as Behavioral Relicts of Ancestral Sexual-Size Dimorphism.
Evol Psychol. 2025 Jul-Sep;23(3):14747049251358630. doi: 10.1177/14747049251358630. Epub 2025 Jul 15.

本文引用的文献

1
The Infancy of the Human Brain.
Neuron. 2015 Oct 7;88(1):93-109. doi: 10.1016/j.neuron.2015.09.026.
2
Can a few non-coding mutations make a human brain?
Bioessays. 2015 Oct;37(10):1054-61. doi: 10.1002/bies.201500049. Epub 2015 Aug 25.
3
4
Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture.
Nat Methods. 2015 Jul;12(7):671-8. doi: 10.1038/nmeth.3415. Epub 2015 May 25.
5
Corticalization of motor control in humans is a consequence of brain scaling in primate evolution.
J Comp Neurol. 2016 Feb 15;524(3):448-55. doi: 10.1002/cne.23792. Epub 2015 May 12.
8
Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex.
Nat Neurosci. 2015 May;18(5):637-46. doi: 10.1038/nn.3980. Epub 2015 Mar 3.
9
Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion.
Science. 2015 Mar 27;347(6229):1465-70. doi: 10.1126/science.aaa1975. Epub 2015 Feb 26.
10
Genetic changes shaping the human brain.
Dev Cell. 2015 Feb 23;32(4):423-34. doi: 10.1016/j.devcel.2015.01.035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验