Suppr超能文献

一种贝叶斯非线性混合效应疾病进展模型。

A Bayesian nonlinear mixed-effects disease progression model.

作者信息

Kim Seongho, Jang Hyejeong, Wu Dongfeng, Abrams Judith

机构信息

Biostatistics Core, Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201.

Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202.

出版信息

J Biom Biostat. 2015 Dec;6(5). doi: 10.4172/2155-6180.1000271. Epub 2015 Dec 30.

Abstract

A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and are compared with the estimation method that does not consider random-effects from age. Using the developed models, we obtain not only age-specific individual-level distributions, but also population-level distributions of sensitivity, sojourn time and transition probability.

摘要

在贝叶斯框架下,我们针对纳入年龄差异的疾病进展模型开发了一种非线性混合效应方法。我们进一步推广了敏感性概率模型,使其依赖于诊断时的年龄、临床前状态所花费的时间以及停留时间。然后,使用贝叶斯马尔可夫链蒙特卡罗方法将所开发的模型应用于约翰霍普金斯肺部项目数据和大纽约地区健康保险计划数据,并与不考虑年龄随机效应的估计方法进行比较。使用所开发的模型,我们不仅获得了特定年龄的个体水平分布,还得到了敏感性、停留时间和转移概率的总体水平分布。

相似文献

1
A Bayesian nonlinear mixed-effects disease progression model.
J Biom Biostat. 2015 Dec;6(5). doi: 10.4172/2155-6180.1000271. Epub 2015 Dec 30.
2
Estimation of sensitivity depending on sojourn time and time spent in preclinical state.
Stat Methods Med Res. 2016 Apr;25(2):728-40. doi: 10.1177/0962280212465499. Epub 2012 Nov 4.
3
Inference of Onset Age of Preclinical State and Sojourn Time for Breast Cancer.
Med Res Arch. 2022 Feb;10(2). doi: 10.18103/mra.v10i2.2665.
4
Inference of Sojourn Time and Transition Density using the NLST X-ray Screening Data in Lung Cancer.
Med Res Arch. 2021 May;9(5). doi: 10.18103/mra.v9i5.2399. Epub 2021 May 25.
5
A Bayesian model for estimating multi-state disease progression.
Comput Biol Med. 2017 Feb 1;81:111-120. doi: 10.1016/j.compbiomed.2016.12.011. Epub 2016 Dec 22.
9
A bayesian random-effects markov model for tumor progression in women with a family history of breast cancer.
Biometrics. 2008 Dec;64(4):1231-7. doi: 10.1111/j.1541-0420.2007.00979.x. Epub 2008 Jan 24.

引用本文的文献

2
Quantifying the duration of the preclinical detectable phase in cancer screening: a systematic review.
Epidemiol Health. 2022;44:e2022008. doi: 10.4178/epih.e2022008. Epub 2022 Jan 3.

本文引用的文献

1
Estimation of sensitivity depending on sojourn time and time spent in preclinical state.
Stat Methods Med Res. 2016 Apr;25(2):728-40. doi: 10.1177/0962280212465499. Epub 2012 Nov 4.
2
Sojourn time and lead time projection in lung cancer screening.
Lung Cancer. 2011 Jun;72(3):322-6. doi: 10.1016/j.lungcan.2010.10.010. Epub 2010 Nov 13.
3
MLE and Bayesian inference of age-dependent sensitivity and transition probability in periodic screening.
Biometrics. 2005 Dec;61(4):1056-63. doi: 10.1111/j.1541-0420.2005.00361.x.
4
Periodic screening for breast cancer: the HIP Randomized Controlled Trial. Health Insurance Plan.
J Natl Cancer Inst Monogr. 1997(22):27-30. doi: 10.1093/jncimono/1997.22.27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验