Suppr超能文献

用于有乳腺癌家族史女性肿瘤进展的贝叶斯随机效应马尔可夫模型。

A bayesian random-effects markov model for tumor progression in women with a family history of breast cancer.

作者信息

Hui-Min Wu Grace, Chang Shu-Hui, Hsiu-Hsi Chen Tony

机构信息

Institute of Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.

出版信息

Biometrics. 2008 Dec;64(4):1231-7. doi: 10.1111/j.1541-0420.2007.00979.x. Epub 2008 Jan 24.

Abstract

It makes intuitive sense to model the natural history of breast cancer, tumor progression from preclinical screen-detectable phase (PCDP) to clinical disease, as a multistate process, but the multilevel structure of the available data, which generally comes from cluster (family)-based service screening programs, makes the required parameter estimation intractable because there is a correlation between screening rounds in the same individual, and between subjects within clusters (families). There is also residual heterogeneity after adjusting for covariates. We therefore proposed a Bayesian hierarchical multistate Markov model with fixed and random effects and applied it to data from a high-risk group (women with a family history of breast cancer) participating in a family-based screening program for breast cancer. A total of 4867 women attended (representing 4464 families) and by the end of 2002, a total of 130 breast cancer cases were identified. Parameter estimation was carried out using Markov chain Monte Carlo (MCMC) simulation and the Bayesian software package WinBUGS. Models with and without random effects were considered. Our preferred model included a random-effect term for the transition rate from preclinical to clinical disease (sigma(2)(2f)), which was estimated to be 0.50 (95% credible interval = 0.22-1.49). Failure to account for this random effect was shown to lead to bias. The incorporation of covariates into multistate models with random effect not only reduced residual heterogeneity but also improved the convergence of stationary distribution. Our proposed Bayesian hierarchical multistate model is a valuable tool for estimating the rate of transitions between disease states in the natural history of breast cancer (and possibly other conditions). Unlike existing models, it can cope with the correlation structure of multilevel screening data, covariates, and residual (unexplained) variation.

摘要

将乳腺癌的自然史(即肿瘤从临床前筛查可检测阶段(PCDP)发展到临床疾病)建模为一个多状态过程,这在直观上是合理的。但可用数据通常来自基于群组(家庭)的服务筛查项目,其多层次结构使得所需的参数估计变得棘手,因为同一个体的筛查轮次之间以及群组(家庭)内的个体之间存在相关性。在调整协变量后,仍存在残余异质性。因此,我们提出了一种具有固定效应和随机效应的贝叶斯分层多状态马尔可夫模型,并将其应用于参与基于家庭的乳腺癌筛查项目的高危人群(有乳腺癌家族史的女性)的数据。共有4867名女性参与(代表4464个家庭),到2002年底,共确诊130例乳腺癌病例。使用马尔可夫链蒙特卡罗(MCMC)模拟和贝叶斯软件包WinBUGS进行参数估计。考虑了有无随机效应的模型。我们首选的模型包括从临床前到临床疾病的转移率的随机效应项(sigma(2)(2f)),估计值为0.50(95%可信区间 = 0.22 - 1.49)。结果表明,不考虑这种随机效应会导致偏差。将协变量纳入具有随机效应的多状态模型不仅减少了残余异质性,还改善了平稳分布的收敛性。我们提出的贝叶斯分层多状态模型是估计乳腺癌(可能还有其他疾病)自然史中疾病状态之间转移率的有价值工具。与现有模型不同,它可以处理多层次筛查数据、协变量和残余(无法解释)变异的相关结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验