Suppr超能文献

遥感获取的火灾频率、土壤湿度和生态系统生产力解释了鸸鹋在澳大利亚的区域迁移情况。

Remote Sensing Derived Fire Frequency, Soil Moisture and Ecosystem Productivity Explain Regional Movements in Emu over Australia.

作者信息

Madani Nima, Kimball John S, Nazeri Mona, Kumar Lalit, Affleck David L R

机构信息

Numerical Terradynamic Simulation Group, College of Forestry & Conservation, University of Montana, 32 Campus Drive Missoula, MT, 59812, United States of America.

School of Journalism, Department of Environmental Journalism, University of Montana, 32 Campus Drive, Missoula, MT, 59812, United States of America.

出版信息

PLoS One. 2016 Jan 22;11(1):e0147285. doi: 10.1371/journal.pone.0147285. eCollection 2016.

Abstract

Species distribution modeling has been widely used in studying habitat relationships and for conservation purposes. However, neglecting ecological knowledge about species, e.g. their seasonal movements, and ignoring the proper environmental factors that can explain key elements for species survival (shelter, food and water) increase model uncertainty. This study exemplifies how these ecological gaps in species distribution modeling can be addressed by modeling the distribution of the emu (Dromaius novaehollandiae) in Australia. Emus cover a large area during the austral winter. However, their habitat shrinks during the summer months. We show evidence of emu summer habitat shrinkage due to higher fire frequency, and low water and food availability in northern regions. Our findings indicate that emus prefer areas with higher vegetation productivity and low fire recurrence, while their distribution is linked to an optimal intermediate (~0.12 m3 m(-3)) soil moisture range. We propose that the application of three geospatial data products derived from satellite remote sensing, namely fire frequency, ecosystem productivity, and soil water content, provides an effective representation of emu general habitat requirements, and substantially improves species distribution modeling and representation of the species' ecological habitat niche across Australia.

摘要

物种分布模型已广泛应用于研究栖息地关系及保护目的。然而,忽视有关物种的生态知识,例如它们的季节性迁徙,以及忽略能够解释物种生存关键要素(庇护所、食物和水)的适当环境因素,会增加模型的不确定性。本研究通过对澳大利亚鸸鹋(Dromaius novaehollandiae)的分布进行建模,例证了如何解决物种分布模型中的这些生态差距。鸸鹋在澳大利亚冬季会覆盖大片区域。然而,它们的栖息地在夏季会缩小。我们展示了由于北部地区火灾频率较高、水和食物供应不足,鸸鹋夏季栖息地缩小的证据。我们的研究结果表明,鸸鹋更喜欢植被生产力较高且火灾复发率较低的地区,而它们的分布与最佳的中等土壤湿度范围(约0.12立方米/立方米)相关。我们建议,应用从卫星遥感获得的三种地理空间数据产品,即火灾频率、生态系统生产力和土壤含水量,能有效体现鸸鹋的一般栖息地需求,并大幅改进澳大利亚境内物种分布模型及物种生态栖息地生态位的呈现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d82c/4723036/5e277eaa424b/pone.0147285.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验