Mayer Magnus C, Schauenburg Linda, Thompson-Steckel Greta, Dunsing Valentin, Kaden Daniela, Voigt Philipp, Schaefer Michael, Chiantia Salvatore, Kennedy Timothy E, Multhaup Gerhard
Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany.
McGill Program in Neuroengineering, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
J Neurochem. 2016 Apr;137(2):266-76. doi: 10.1111/jnc.13540. Epub 2016 Mar 7.
The amyloid precursor protein (APP) and its paralogs, amyloid precursor-like protein 1 (APLP1) and APLP2, are metalloproteins with a putative role both in synaptogenesis and in maintaining synapse structure. Here, we studied the effect of zinc on membrane localization, adhesion, and secretase cleavage of APP, APLP1, and APLP2 in cell culture and rat neurons. For this, we employed live-cell microscopy techniques, a microcontact printing adhesion assay and ELISA for protein detection in cell culture supernatants. We report that zinc induces the multimerization of proteins of the amyloid precursor protein family and enriches them at cellular adhesion sites. Thus, zinc facilitates the formation of de novo APP and APLP1 containing adhesion complexes, whereas it does not have such influence on APLP2. Furthermore, zinc-binding prevented cleavage of APP and APLPs by extracellular secretases. In conclusion, the complexation of zinc modulates neuronal functions of APP and APLPs by (i) regulating formation of adhesion complexes, most prominently for APLP1, and (ii) by reducing the concentrations of neurotrophic soluble APP/APLP ectodomains. Earlier studies suggest a function of the amyloid precursor protein (APP) family proteins in neuronal adhesion. We report here that adhesive function of these proteins is tightly regulated by zinc, most prominently for amyloid precursor-like protein 1 (APLP1). Zinc-mediated APLP1 multimerization, which induced formation of new neuronal contacts and decreased APLP1 shedding. This suggests that APLP1 could function as a zinc receptor processing zinc signals to stabilized or new neuronal contacts.
淀粉样前体蛋白(APP)及其旁系同源物,即淀粉样前体样蛋白1(APLP1)和APLP2,是金属蛋白,在突触形成和维持突触结构中均具有假定作用。在此,我们研究了锌对细胞培养物和大鼠神经元中APP、APLP1和APLP2的膜定位、黏附及分泌酶切割的影响。为此,我们采用了活细胞显微镜技术、微接触印刷黏附试验以及用于检测细胞培养上清液中蛋白质的酶联免疫吸附测定(ELISA)。我们报告称,锌可诱导淀粉样前体蛋白家族蛋白多聚化,并使其在细胞黏附位点富集。因此,锌促进了含APP和APLP1的新生黏附复合物的形成,而对APLP2没有这种影响。此外,锌结合可阻止细胞外分泌酶对APP和APLPs的切割。总之,锌的络合通过以下方式调节APP和APLPs的神经元功能:(i)调节黏附复合物的形成,对APLP1最为显著;(ii)降低神经营养性可溶性APP/APLP胞外域的浓度。早期研究表明淀粉样前体蛋白(APP)家族蛋白在神经元黏附中具有作用。我们在此报告,这些蛋白的黏附功能受到锌的严格调控,对淀粉样前体样蛋白1(APLP1)最为显著。锌介导的APLP1多聚化诱导了新的神经元接触的形成,并减少了APLP1的脱落。这表明APLP1可能作为锌受体发挥作用,处理锌信号以稳定或形成新的神经元接触。